Catalytic and thermodynamic properties of an acidic α-amylase produced by the fungus Paecilomyces variotii ATHUM 8891

Abstract

An extracellular acid stable α-amylase from Paecilomyces variotii ATHUM 8891 (PV8891 α-amylase) was purified to homogeneity applying ammonium sulfate fractionation, ion exchange and gel filtration chromatography and exhibited a reduced molecular weight of 75 kDa. The purified enzyme was optimally active at pH 5.0 and 60 °C and stable in acidic pH (3.0–6.0). Km, vmax and kcat for starch hydrolysis were found 1.1 g L−1, 58.5 μmole min−1 (mg protein)−1, and 73.1 s−1, respectively. Amylase activity was marginally enhanced by Ca2+ and Fe2+ ions while Cu2+ ions strongly inhibited it. Thermodynamic parameters determined for starch hydrolysis (Εα, ΔH*, ΔG*, ΔS*, \({\Delta G}_{\mathrm{E}-\mathrm{S}}^{\mathrm{*}}\) and \({\Delta G}_{\mathrm{E}-\mathrm{T}}^{\mathrm{*}}\)) suggests an effective capacity of PV8891 α-amylase towards starch hydrolysis. Thermal stability of PV8891 α-amylase was assessed at different temperatures (30–80 οC). Thermodynamic parameters (\({E}_{\left(a\right)d}\), ΔH*, ΔG*, ΔS*) as well as the integral activity of a continuous system for starch hydrolysis by the PV8891 α-amylase revealed satisfactory thermostability up to 60 °C. The acidic nature and its satisfactory performance at temperatures lower than the industrially used amylases may represent potential applications of PV8891 α-amylase in starch processing industry.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Abdulaal WH (2018) Purification and characterization of α-amylase from Trichoderma pseudokoningii. BMC Biochem 19:4. https://doi.org/10.1186/s12858-018-0094-8

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  2. Ademakinwa AN, Agunbiade MO, Ayinla ZA, Agboola FK (2019) Optimization of aqueous two-phase partitioning of Aureobasidium pullulans α-amylase via response surface methodology and investigation of its thermodynamic and kinetic properties. Int J Biol Macromol 140:833–841. https://doi.org/10.1016/j.ijbiomac.2019.08.159

    CAS  Article  PubMed  Google Scholar 

  3. Allala F, Bouacema K, Boucherba N, Azzouz Z, Mechri S, Sahnounc M, Benallaoua S, Hacene H, Jaouadi B, Bouanane-Darenfed A (2019) Purification, biochemical, and molecular characterization of a novel extracellular thermostable and alkaline α-amylase from Tepidimonas fonticaldi strain HB23. Int J Biol Macromol 132:558–574. https://doi.org/10.1016/j.ijbiomac.2019.03.201

    CAS  Article  PubMed  Google Scholar 

  4. Anindyawati T, Melliawati R, Ito K, Iizuka M, Minamiura N (1998) Three different types of α-amylases from Aspergillus awamori KT-11: their purifications, properties, and specificities. Biosci Biotech Bioch 62:1351–1357. https://doi.org/10.1271/bbb.62.1351

    CAS  Article  Google Scholar 

  5. Asoodeh A, Alemi A, Heydari A, Akbari J (2013) Purification and biochemical characterization of an acidophilic amylase from a newly isolated Bacillus sp. DR90. Extremophiles 17:339–348. https://doi.org/10.1007/s00792-013-0520-1

    CAS  Article  PubMed  Google Scholar 

  6. Baks T, Bruins ME, Matser AM, Janssen AEM, Boom RM (2008) Effect of gelatinization and hydrolysis conditions on the selectivity of starch hydrolysis with α-amylase from Bacillus licheniformis. J Agric Food Chem 56(2):488–495. https://doi.org/10.1021/jf072217j

    CAS  Article  PubMed  Google Scholar 

  7. Bradford MM (1976) Rapid and sensitive method for quantitation of microgram quantities of protein utilising principle of protein dye binding. Analyt Biochem 72:248–254. https://doi.org/10.1016/0003-2697(76)90527-3

    CAS  Article  PubMed  Google Scholar 

  8. da Silva OS, de Oliveira RL, de Carvalho Silva J, Converti A, Souza Porto T (2018) Thermodynamic investigation of an alkaline protease from Aspergillus tamarii URM4634: a comparative approach between crude extract and purified enzyme. Int J Biol Macromol 109:1039–1044. https://doi.org/10.1016/j.ijbiomac.2017.11.081

    CAS  Article  Google Scholar 

  9. de Oliveira RL, da Silva OS, Converti A, Souza PT (2018) Thermodynamic and kinetic studies on pectinase extracted from Aspergillus aculeatus: free and immobilized enzyme entrapped in alginate beads. Int J Biol Macromol 115:1088–1093. https://doi.org/10.1016/j.ijbiomac.2018.04.154

    CAS  Article  PubMed  Google Scholar 

  10. Dey TB, Banerjee R (2015) Purification, biochemical characterization and application of α-amylase produced by Aspergillus oryzae IFO-30103. Biocatal Agric Biotechnol 4(1):83–90. https://doi.org/10.1016/j.bcab.2014.10.002

    Article  Google Scholar 

  11. Dixon M, Webb EC (1979) Enzyme kinetics. In: Dixon M, Webb EC (eds) Enzymes. Academic Press, New York, pp 47–206

    Google Scholar 

  12. Eyring H, Stearn AE (1939) The application of the theory of absolute reaction rates to protein. Chem Rev 24:253–270. https://doi.org/10.1021/cr60078a005

    CAS  Article  Google Scholar 

  13. Gangadharan D, Nampoothiri KM, Sivaramakrishnan S, Pandey A (2009) Biochemical characterization of raw-starch-digesting alpha amylase purified from Bacillus amyloliquefaciens. Appl Biochem Biotechnol 158:653–662. https://doi.org/10.1007/s12010-008-8347-4

    CAS  Article  PubMed  Google Scholar 

  14. Gouzi H, Depagne C, Thibaud C (2012) Kinetics and thermodynamics of the thermal inactivation of polyphenol oxidase in an aqueous extract from Agaricus bisporus. J Agric Food Chem 60:500–506. https://doi.org/10.1021/jf204104g

    CAS  Article  PubMed  Google Scholar 

  15. Goyal Ν, Gupta JK, Soni SK (2005) A novel raw starch digesting thermostable a-amylase from Bacillus sp. I-3 and its use in the direct hydrolysis of raw potato starch. Enzyme Microb. Technol 37(7):723–734. https://doi.org/10.1016/j.enzmictec.2005.04.017

    CAS  Article  Google Scholar 

  16. Grootegoed JA, Lauwers AM, Heinen W (1973) Separation and partial purification of extracellular amylase and protease from Bacillus caldolyticus. Archiv Mikrobiol 90:223–232. https://doi.org/10.1007/BF00424974

    CAS  Article  Google Scholar 

  17. Gummadi SN (2003) What is the role of thermodynamics on protein stability? Biotechnol Bioproc E 8:9–18. https://doi.org/10.1007/BF02932892

    CAS  Article  Google Scholar 

  18. Gupta R, Gigras P, Mohapatra H, Goswami VK, Chauhan B (2003) Microbial a-amylases: a biotechnological perspective. Process Biochem 38(11):1599–1616. https://doi.org/10.1016/S0032-9592(03)00053-0

    CAS  Article  Google Scholar 

  19. Hasmann FA, Gurpilhares DB, Roberto IC, Converti A, Pessoa A Jr (2007) New combined kinetic and thermodynamic approach to model glucose-6-phosphate dehydrogenase activity and stability. Enzyme Microb Technol 40:849–858. https://doi.org/10.1016/j.enzmictec.2006.06.017

    CAS  Article  Google Scholar 

  20. Karam EA, Wahab WAA, Saleh SAA, Hassan ME, Kansoh AL, Esawy MA (2017) Production, immobilization and thermodynamic studies of free and immobilized Aspergillus awamori amylase. Int J Biol Macromol 102:694–703. https://doi.org/10.1016/j.ijbiomac.2017.04.033

    CAS  Article  PubMed  Google Scholar 

  21. Kikani BA, Singh SP (2012) The stability and thermodynamic parameters of a very thermostable and calcium-independent -amylase from a newly isolated bacterium, Anoxybacillus beppuensis TSSC-1. Process Biochem 47(12):1791–1798. https://doi.org/10.1016/j.procbio.2012.06.005

    CAS  Article  Google Scholar 

  22. Kikani BA, Singh SP (2015) Enzyme stability, thermodynamics and secondary structures of a-amylase as probed by the CD spectroscopy. Int J Biol Macromol 81:450–460. https://doi.org/10.1016/j.ijbiomac.2015.08.032

    CAS  Article  PubMed  Google Scholar 

  23. Michelin M, Silva TM, Benassi VM, Peixoto-Nogueira SC, Moraes LAB, Leão JM, Jorge JA, Terenzi HF, Polizeli MLTM (2010) Purification and characterization of a thermostable a-amylase produced by the fungus Paecilomyces variotii. Carbohyd Res 345:2348–2353. https://doi.org/10.1016/j.carres.2010.08.013

    CAS  Article  Google Scholar 

  24. Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31:426–428. https://doi.org/10.1021/ac60147a030

    CAS  Article  Google Scholar 

  25. Nguyen QD, Rezessy-Szabó JM, Claeyssens M, Stals I, Hoschke Á (2002) Purification and characterisation of amylolytic enzymes from thermophilic fungus Thermomyces lanuginosus strain ATCC 34626. Enzyme Microb Technol 31:345–352. https://doi.org/10.1016/S0141-0229(02)00128-X

    CAS  Article  Google Scholar 

  26. Pace CN (1992) Contribution of the hydrophobic effect to globular protein stability. J Mol Biol 226:29–35. https://doi.org/10.1016/0022-2836(92)90121-Y

    CAS  Article  PubMed  Google Scholar 

  27. Porto TS, Porto CS, Cavalcanti MTH, Filho JLL, Perego P, Porto ALF, Converti A, Pessoa A Jr (2006) Kinetic and thermodynamic investigation on ascorbate oxidase activity and stability of a Cucurbita maxima. Extract Biotechnol Prog 22:1637–1642. https://doi.org/10.1021/bp0602350

    CAS  Article  PubMed  Google Scholar 

  28. Rana N, Walia A, Gaur A (2013) a-Amylases from microbial sources and its potential applications in various industries. Natl Acad Sci Lett 36(1):9–17. https://doi.org/10.1007/s40009-012-0104-0

    CAS  Article  Google Scholar 

  29. Ratanakhanokchai K, Kaneko J, Kamio Y, Izaki K (1992) Purification and properties of a maltotetraose and maltotriose producing amylase from Chloroflexus aurantiacus. Appl Environ Microbiol 58:2490–2494

    CAS  Article  Google Scholar 

  30. Riaz M, Perveen R, Javed ΜΡ, Nadeem Η, Rashid ΜΗ (2007) Kinetic and thermodynamic properties of novel glucoamylase from Humicola sp. Enzyme Microb Technol 41:558–564. https://doi.org/10.1016/j.enzmictec.2007.05.010

    CAS  Article  Google Scholar 

  31. Robyt J (2008) Starch: Structure, Properties, Chemistry and Enzymology. In: Fraser-Reid BO, Tatsuta K, Thiem J (eds) Glycoscience. Springer, Berlin, pp 1437–1472. https://doi.org/10.1007/978-3-540-30429-6_35

    Google Scholar 

  32. Samanta S, Das A, Halder SK, Jana A, Kar S, Mohapatra PKD, Pati BR, Mondal KC (2014) Thermodynamic and kinetic characteristics of an α-amylase from Bacillus licheniformis SKB4. Acta Biologica Szegediensis 58(2):147–156

    Google Scholar 

  33. Sharma A, Satyanarayana T (2013) Microbial acid-stable α-amylases: characteristics, genetic engineering and applications. Process Biochem 48(2):201–211. https://doi.org/10.1016/j.procbio.2012.12.018

    CAS  Article  Google Scholar 

  34. Shukla RJ, Singh SP (2015) Characteristics and thermodynamics of a-amylase from thermophilic actinobacterium, Laceyella sacchari TSI-2. Process Biochem 50(12):2128–2136. https://doi.org/10.1016/j.procbio.2015.10.013

    CAS  Article  Google Scholar 

  35. Singh PL, Singh AK, Kumar Y (2018) Kinetics and thermodynamic studies of partially purified alpha amylase produced from Bacillus altitunidis. World J Pharm Pharm Sci 7(2):1362–1376. https://doi.org/10.20959/wjpps20182-11013

    CAS  Article  Google Scholar 

  36. Sugumaran Kr, Ponnusami V, Srivastava SN (2012) Partial purification and thermodynamic analysis of thermostable α-amylase from Bacillus cereus MTCC 1305. Int J Pharm Bio Sci 3:407–413

    CAS  Google Scholar 

  37. Wu X, Wang Y, Tong B, Chen X, Chen J (2018) Purification and biochemical characterization of a thermostable and acid-stable alpha-amylase from Bacillus licheniformis B4–423. Int J Biol Macromol 109:329–337. https://doi.org/10.1016/j.ijbiomac.2017.12.004

    CAS  Article  PubMed  Google Scholar 

  38. Xian L, Wang F, Luo X, Feng Y-L, Feng J-X (2015) Purification and characterization of a highly efficient calcium-independent α-amylase from Talaromyces pinophilus 1–95. PLoS ONE 10(3):e0121531. https://doi.org/10.1371/journal.pone.0121531

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  39. Zenin CT, Park YK (1983) Purification and characterization of acid a-amylase from Paecilomyces sp. J Ferment Technol 61:109–112

    CAS  Google Scholar 

  40. Zerva A, Savvides AL, Katsifas EA, Karagouni AD, Hatzinikolaou DG (2014) Evaluation of Paecilomyces variotii potential in bioethanol production from lignocellulose through consolidated bioprocessing. Bioresour Technol 162:294–299. https://doi.org/10.1016/j.biortech.2014.03.137

    CAS  Article  PubMed  Google Scholar 

Download references

Author information

Affiliations

Authors

Contributions

Conceptualization: DM, DH and DK; Methodology: DM, DH; Formal analysis and investigation: MEA, SK; Writing—original draft preparation: DM; Writing—review and editing: all authors.

Corresponding author

Correspondence to Diomi Mamma.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Apostolidi, M.E., Kalantzi, S., Hatzinikolaou, D.G. et al. Catalytic and thermodynamic properties of an acidic α-amylase produced by the fungus Paecilomyces variotii ATHUM 8891. 3 Biotech 10, 311 (2020). https://doi.org/10.1007/s13205-020-02305-2

Download citation

Keywords

  • Acidic α-amylase
  • Paecilomyces variotii
  • Kinetic parameters
  • Thermodynamic parameters