Hyperstabilization of a thermophile bacterial laccase and its application for industrial dyes degradation

Abstract

In the present study, a novel extracellular laccase isolated from Geobacillus stearothermophilus ATCC 10149 was entrapped in a bionanocomposite matrix consisting of copper alginate (Cu-alginate) supplemented with the nanoclay bentonite. After optimization, this nanobiocatalyst was able to degrade up to 90% of Remazol Brilliant Blue R (RBBR) without the addition of redox mediators and retained 70% of its initial activity for at least 1440 h, equivalent to more than 288 uses. The incorporation of nanoclay allowed alginate beads to be used in alkaline pH and strengthened its mechanical properties. Besides, this thermophilic laccase was able to decolorize other structurally different synthetic dyes such as Methyl Orange, Malachite Green and Indigo Carmine. These preliminary results suggested that the nanobiocatalyst could be a suitable option for dye decolorization and be further developed for large scale bioremediation of toxic dyes.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Akpor OB (2018) Effect of nitrogen source concentration on decolouration rates of laboratory dyes by immobilized cells of two bacterial species. World J Microbiol Biotechnol. https://doi.org/10.1007/s11274-017-2402-7

    Article  Google Scholar 

  2. Allison SD, Vitousek PM (2005) Responses of extracellular enzymes to simple and complex nutrient inputs. Soil Biol Biochem 37:937–944. https://doi.org/10.1016/j.soilbio.2004.09.014

    CAS  Article  Google Scholar 

  3. An N, Zhou CH, Zhuang XY et al (2015) Immobilization of enzymes on clay minerals for biocatalysts and biosensors. Appl Clay Sci 114:283–296. https://doi.org/10.1016/j.clay.2015.05.029

    CAS  Article  Google Scholar 

  4. Asgher M, Iqbal HMN (2011) Characterization of a novel manganese peroxidase purified from solid state culture of Trametes versicolor IBL-04. BioResources 6:4317–4330. https://doi.org/10.15376/biores.6.4.4317-4330

    Article  Google Scholar 

  5. Britos CN, Trelles JA (2016) Development of strong enzymatic biocatalysts for dye decolorization. Biocatal Agric Biotechnol 7:228–233. https://doi.org/10.1016/j.bcab.2016.06.009

    Article  Google Scholar 

  6. Britos CN, Gianolini JE, Portillo H, Trelles JA (2018) Biodegradation of industrial dyes by a solvent, metal and surfactant-stable extracellular bacterial laccase. Biocatal Agric Biotechnol 14:221–227. https://doi.org/10.1016/j.bcab.2018.03.015

    Article  Google Scholar 

  7. Cappa VA, Trelles JA (2017) One-pot biosynthesis of idoxuridine using nanostabilized lactic acid bacteria. Process Biochem 62:169–173. https://doi.org/10.1016/j.procbio.2017.07.028

    CAS  Article  Google Scholar 

  8. Cappa VA, Rivero CW, Britos CN et al (2014) An efficient biocatalytic system for floxuridine biosynthesis based on Lactobacillus animalis ATCC 35046 immobilized in Sr-alginate. Process Biochem 49:1169–1175. https://doi.org/10.1016/j.procbio.2014.03.029

    CAS  Article  Google Scholar 

  9. Cappa VA, Rivero CW, Sambeth JE, Trelles JA (2016) Bioproduction of floxuridine using nanostabilized biocatalysts. Chem Eng Technol 39:1723–1730. https://doi.org/10.1002/ceat.201500522

    CAS  Article  Google Scholar 

  10. Cardoso BK, Linde GA, Colauto NB, do Valle JS (2018) Panus strigellus laccase decolorizes anthraquinone, azo, and triphenylmethane dyes. Biocatal Agric Biotechnol 16:558–563. https://doi.org/10.1016/j.bcab.2018.09.026

    Article  Google Scholar 

  11. Chinoune K, Bentaleb K, Bouberka Z et al (2016) Adsorption of reactive dyes from aqueous solution by dirty bentonite. Appl Clay Sci 123:64–75. https://doi.org/10.1016/j.clay.2016.01.006

    CAS  Article  Google Scholar 

  12. Da Silva FR, de Moura MR, Glenn GM, Aouada FA (2018) Thermal, microstructural, and spectroscopic analysis of Ca2+ alginate/clay nanocomposite hydrogel beads. J Mol Liq 265:327–336. https://doi.org/10.1016/j.molliq.2018.06.005

    CAS  Article  Google Scholar 

  13. De Benedetti EC, Rivero CW, Britos CN et al (2012) Biotransformation of 2,6-diaminopurine nucleosides by immobilized Geobacillus stearothermophilus. Biotechnol Prog 28:1251–1256. https://doi.org/10.1002/btpr.1602

    CAS  Article  PubMed  Google Scholar 

  14. De Benedetti EC, Rivero CW, Trelles JA (2015) Development of a nanostabilized biocatalyst using an extremophilic microorganism for ribavirin biosynthesis. J Mol Catal B Enzym 121:90–95. https://doi.org/10.1016/j.molcatb.2015.08.006

    CAS  Article  Google Scholar 

  15. Imran M, Crowley DE, Khalid A et al (2015) Microbial biotechnology for decolorization of textile wastewaters. Rev Environ Sci Biotechnol 14:73–92. https://doi.org/10.1007/s11157-014-9344-4

    CAS  Article  Google Scholar 

  16. Karigar CS, Rao SS (2011) Role of microbial enzymes in the bioremediation of pollutants: a review. Enzym Res. https://doi.org/10.4061/2011/805187

    Article  Google Scholar 

  17. Le TT, Murugesan K, Lee CS et al (2016) Degradation of synthetic pollutants in real wastewater using laccase encapsulated in core-shell magnetic copper alginate beads. Bioresour Technol 216:203–210. https://doi.org/10.1016/j.biortech.2016.05.077

    CAS  Article  PubMed  Google Scholar 

  18. Liu H, Cheng Y, Du B et al (2015) Overexpression of a novel thermostable and chloride-tolerant laccase from Thermus thermophilus SG0.5JP17-16 in Pichia pastoris and its application in synthetic dye decolorization. PLoS ONE. https://doi.org/10.1371/journal.pone.0119833

    Article  PubMed  Google Scholar 

  19. Liu S, Li H, Tang B et al (2016) Scaling law and microstructure of alginate hydrogel. Carbohydr Polym 135:101–109. https://doi.org/10.1016/j.carbpol.2015.08.086

    CAS  Article  PubMed  Google Scholar 

  20. Ma HF, Meng G, Cui BK et al (2018) Chitosan crosslinked with genipin as supporting matrix for biodegradation of synthetic dyes: laccase immobilization and characterization. Chem Eng Res Des 132:664–676. https://doi.org/10.1016/j.cherd.2018.02.008

    CAS  Article  Google Scholar 

  21. Maniyam MN, Yaacob NS, Azman HH et al (2018) Immobilized cells of Rhodococcus strain UCC 0004 as source of green biocatalyst for decolourization and biodegradation of methyl orange. Biocatal Agric Biotechnol 16:569–578. https://doi.org/10.1016/j.bcab.2018.10.008

    Article  Google Scholar 

  22. McPherson A, Gavira JA (2014) Introduction to protein crystallization. Acta Crystallogr Sect F Struct Biol Cryst Commun 70:2–20. https://doi.org/10.1107/S2053230X13033141

    CAS  Article  Google Scholar 

  23. Patel MA, AbouGhaly MHH, Schryer-Praga JV, Chadwick K (2017) The effect of ionotropic gelation residence time on alginate cross-linking and properties. Carbohydr Polym 155:362–371. https://doi.org/10.1016/j.carbpol.2016.08.095

    CAS  Article  PubMed  Google Scholar 

  24. Phetsom J, Khammuang S, Suwannawong P, Sarnthima R (2009) Copper-alginate encapsulation of crude laccase from Lentinus polychorus lev. and their effectiveness in synthetic dyes decolorizations.pdf. J Biol Sci 9:573–583

    CAS  Article  Google Scholar 

  25. Rai R, Bibra M, Chadha BS, Sani RK (2019) Enhanced hydrolysis of lignocellulosic biomass with doping of a highly thermostable recombinant laccase. Int J Biol Macromol 137:232–237. https://doi.org/10.1016/j.ijbiomac.2019.06.221

    CAS  Article  PubMed  Google Scholar 

  26. Ramírez-Tapias YA, Lapasset Laumann AS, Britos CN et al (2017) Saccharification of citrus wastes by immobilized polygalacturonase in an improved alginate matrix. 3 Biotech 7:3–8. https://doi.org/10.1007/s13205-017-1010-4

    Article  Google Scholar 

  27. Salami F, Habibi Z, Yousefi M, Mohammadi M (2018) Covalent immobilization of laccase by one pot three component reaction and its application in the decolorization of textile dyes. Int J Biol Macromol 120:144–151. https://doi.org/10.1016/j.ijbiomac.2018.08.077

    CAS  Article  PubMed  Google Scholar 

  28. Serefoglou E, Litina K, Gournis D et al (2008) Smectite clays as solid supports for immobilization of β-glucosidase: synthesis, characterization, and biochemical properties. Chem Mater 20:4106–4115. https://doi.org/10.1021/cm800486u

    CAS  Article  Google Scholar 

  29. Sing NN, Husaini A, Zulkharnain A, Roslan HA (2017) Decolourisation capabilities of ligninolytic enzymes produced by Marasmius cladophyllus UMAS MS8 on Remazol Brilliant Blue R and other azo dyes. Biomed Res Int 2017:1–8. https://doi.org/10.1155/2017/1325754

    CAS  Article  Google Scholar 

  30. Singh K, Kumar P, Srivastava R (2017) An overview of textile dyes and their removal techniques: Indian perspective. Pollut Res 36:790–797

    Google Scholar 

  31. Sondhi S, Kaur R, Kaur S, Kaur PS (2018) Immobilization of laccase-ABTS system for the development of a continuous flow packed bed bioreactor for decolorization of textile effluent. Int J Biol Macromol 117:1093–1100. https://doi.org/10.1016/j.ijbiomac.2018.06.007

    CAS  Article  PubMed  Google Scholar 

  32. Trelles JA, Rivero CW (2013) Whole cell entrapment techniques. In: Guisan JM (ed) Immobilization of enzymes and cells methods in molecular biology (methods and protocols). Humana Press, New York, pp 365–374

    Google Scholar 

  33. Trelles JA, Rivero CW (2020) Whole cell entrapment techniques. In: Guisan J, Bolivar J, López-Gallego F, Rocha-Martín J (eds) Immobilization of enzymes and cells. Methods in molecular biology. Humana Press, New York, pp 385–394

    Google Scholar 

  34. Vatandoostarani S, Lotfabad TB, Heidarinasab A et al (2018) Integrated system of multiple batches to evaluate the continuous performance of microbial cells in decolourization processes. J Environ Chem Eng 6:728–735. https://doi.org/10.1016/j.jece.2017.12.073

    CAS  Article  Google Scholar 

  35. Wingfield PT (2016) Protein precipitation using ammonium sulfate. Curr Protoc Protein Sci 2016:A.3F.1–A.3F.9. https://doi.org/10.1002/0471140864.psa03fs84

    Article  Google Scholar 

  36. Xie X, Liu N, Yang F et al (2018) Comparative study of antiestrogenic activity of two dyes after Fenton oxidation and biological degradation. Ecotoxicol Environ Saf 164:416–424. https://doi.org/10.1016/J.ECOENV.2018.08.012

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by Agencia Nacional de Promoción Científica y Tecnológica (PICT 2013-2658 and PICT 2014-3438), Consejo Nacional de Investigaciones Científicas y Técnicas (PIP 2014-KA5-00805) and Universidad Nacional de Quilmes (PUNQ 1309/19). We are also grateful to Juan F. Delgado for his kind support in the compression tests.

Author information

Affiliations

Authors

Contributions

JG, CB and JT conceived and designed the study; CM contributed in experiment design and analysis; JG performed the experiments; JG and JT wrote the paper. All authors read and approved the manuscript.

Corresponding author

Correspondence to Jorge A. Trelles.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest in the publication.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gianolini, J.E., Britos, C.N., Mulreedy, C.B. et al. Hyperstabilization of a thermophile bacterial laccase and its application for industrial dyes degradation. 3 Biotech 10, 288 (2020). https://doi.org/10.1007/s13205-020-02277-3

Download citation

Keywords

  • Biodegradation
  • Geobacillus
  • Nanoclay
  • Bentonite
  • Cu-alginate
  • Immobilization