Screening of yeasts isolated from Baijiu environments for 2-phenylethanol production and optimization of production conditions

Abstract

2-Phenylethanol (2-PE) with a pleasant rose-like odor is a valuable aroma compound used in many fields. 2-PE production by yeast is considered a promising alternative to chemical synthesis and extraction from natural materials. In this report, the strain YF1702 produced a significantly higher level of 2-PE when compared with other strains isolated from Baijiu-producing environments. According to morphological properties, physiological and biochemical characteristics, and 26S rDNA sequence analysis, strain YF1702 was identified as Pichia kudriavzevii. The optimal fermentation conditions of YF1702 for producing 2-PE were obtained by single-factor experiments, Plackett–Burman design, steepest ascent design, and response surface methodology. The optimal inoculation conditions for strain YF1702 were 50 g/L glucose, 6.0 g/L yeast extract, 10.7 g/L L-Phe, and 32 g/L Tween-60. The optimal fermentation conditions were pH 2.3, 26 °C, 210 rpm shaking, an inoculum size of 0.4% (v/v), and a loading volume of 25.5 mL/250 mL for 56 h. Under these optimal conditions 2-PE production by YF1702 was 5.09 g/L. This strain has the potential to increase the content of 2-PE in Baijiu production and enhance the aroma characteristics of Baijiu.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Bialecka-Florjanczyk E, Krzyczkowska J, Stolarzewicz I, Kapturowska A (2012) Synthesis of 2-phenylethyl acetate in the presence of Yarrowia lipolytica KKP 379 biomass. J Mol Catal B-Enzym 74:241–245. https://doi.org/10.1016/j.molcatb.2011.10.010

    CAS  Article  Google Scholar 

  2. Carlquist M, Gibson B, Yuceer YK, Paraskevopoulou A, Sandell M, Angelov AI, Gotcheva V, Angelov AD, Etschmann M, de Billerbeck GM, Liden G (2015) Process engineering for bioflavour production with metabolically active yeasts—a mini-review. Yeast 32:123–143. https://doi.org/10.1002/yea.3058

    CAS  Article  Google Scholar 

  3. Chreptowicz K, Sternicka MK, Kowalska PD, Mierzejewska J (2018) Screening of yeasts for the production of 2-phenylethanol (rose aroma) in organic waste-based media. Lett Appl Microbiol 66:153–160. https://doi.org/10.1111/lam.12835

    CAS  Article  Google Scholar 

  4. Chreptowicz K, Wielechowska M, Glowczyk-Zubek J, Rybak E, Mierzejewska J (2016) Production of natural 2-phenylethanol: from biotransformation to purified product. Food Bioprod Process 100:275–281. https://doi.org/10.1016/j.fbp.2016.07.011

    CAS  Article  Google Scholar 

  5. Eshkol N, Sendovski M, Bahalul M, Katz-Ezov T, Kashi Y, Fishman A (2009) Production of 2-phenylethanol from L-phenylalanine by a stress tolerant Saccharomyces cerevisiae strain. J Appl Microbiol 106:534–542. https://doi.org/10.1111/j.1365-2672.2008.04023.x

    CAS  Article  Google Scholar 

  6. Etschmann M, Bluemke W, Sell D, Schrader J (2002) Biotechnological production of 2-phenylethanol. Appl Microbiol Biot 59:1–8. https://doi.org/10.1007/s00253-002-0992-x

    CAS  Article  Google Scholar 

  7. Etschmann M, Sell D, Schrader J (2003) Screening of yeasts for the production of the aroma compound 2-phenylethanol in a molasses-based medium. Biotechnol Lett 25:531–536. https://doi.org/10.1023/A:1022890119847

    CAS  Article  Google Scholar 

  8. Etschmann M, Sell D, Schrader J (2004) Medium optimization for the production of the aroma compound 2-phenylethanol using a genetic algorithm. J Mol Catal B-Enzym 29:187–193. https://doi.org/10.1016/j.molcatb.2003.10.014

    CAS  Article  Google Scholar 

  9. Etschmann M, Sell D, Schrader J (2005) Production of 2-phenylethanol and 2-phenylethylacetate from L-phenylalanine by coupling whole-cell biocatalysis with organophilic pervaporation. Biotechnol Bioeng 92:624–634. https://doi.org/10.1002/bit.20655

    CAS  Article  Google Scholar 

  10. Eun KM, Chang KS (2007) Optimization of culture conditions for phenylethyl alcohol production by Pichia anomala SKM-T using response surface methodology. Food Sci Biotechnol 16:159–162

    Google Scholar 

  11. Fabre CE, Blanc PJ, Goma G (1998) Production of 2-phenylethyl alcohol by Kluyveromyces marxianus. Biotechnol Progr 14:270–274. https://doi.org/10.1021/bp9701022

    CAS  Article  Google Scholar 

  12. Fan GS, Fu ZL, Sun BG, Zhang YH, Wang XL, Xia YQ, Huang MQ, Li XT (2019a) Roles of aging in the production of light-flavored Daqu. J Biosci Bioeng 127:309–317. https://doi.org/10.1016/j.jbiosc.2018.08.005

    CAS  Article  Google Scholar 

  13. Fan GS, Fu ZL, Teng C, Wu QH, Liu PX, Yang R, Minhazul KAHM, Li XT (2019b) Comprehensive analysis of different grades of roasted-sesame-like flavored Daqu. Int J Food Prop 22:1205–1222. https://doi.org/10.1080/10942912.2019.1635154

    Article  Google Scholar 

  14. Fan GS, Liu PX, Wu QH, Fu ZL, Cheng LJ, Zhu YT, Zhu YP, Yang R, Li XT (2019c) Optimization of cultural conditions for ethyl alcohol production by Saccharomyces cerevisiae YF1914 in aerobic conditions and its aroma-producing characteristics. Sci Technol Food Ind 40:52–58. https://doi.org/10.13386/j.issn1002-0306.2019.13.009

    Article  Google Scholar 

  15. Fan GS, Sun BG, Xu D, Teng C, Fu ZL, Du YH, Li XT (2018) Isolation and identification of high-yield ethyl acetate-producing yeast from Gujinggong Daqu and its fermentation characteristics. J Am Soc Brew Chem 76:117–124. https://doi.org/10.1080/03610470.2017.1396849

    CAS  Article  Google Scholar 

  16. Fan GS, Yang SQ, Yan QJ, Yan Y, Jiang ZQ (2013) Optimization of xylanase production from Thermomyces lanuginosus CAU44 by solid-state fermentation. Sci Technol Food Ind 33:219–224. https://doi.org/10.13386/j.issn1002-0306.2012.06.037

    Article  Google Scholar 

  17. Fan WL, Qian MC (2006) Characterization of aroma compounds of Chinese "Wuliangye" and "Jiannanchun" liquors by aroma extract dilution analysis. J Agr Food Chem 54:2695–2704. https://doi.org/10.1021/jf052635t

    CAS  Article  Google Scholar 

  18. Grygier A, Majcher M, Myszka K (2015) Analysis of the ability to form 2-phenylethyl alcohol by Galactomyces geotrichum MK017. Zywnosc 22:74–83. https://doi.org/10.15193/zntj/2015/100/041

    CAS  Article  Google Scholar 

  19. Hao RJ, Zhang QX, Yang WR, Wang J, Pan HT, Cheng TR (2014) Study on the difference in characteristic scent between Prunus mume and its interspecific hybrids. J Nucl Agric Sci 28:808–816. https://doi.org/10.11869/j.issn.100-8551.2014.05.0808

    CAS  Article  Google Scholar 

  20. Hua DL, Lin S, Li YF, Chen H, Zhang ZB, Du Y, Zhang XH, Xu P (2010) Enhanced 2-phenylethanol production from L-phenylalanine via in situ product adsorption. Biocatal Biotransfor 28:259–266. https://doi.org/10.3109/10242422.2010.500724

    CAS  Article  Google Scholar 

  21. Hua DL, Xu P (2011) Recent advances in biotechnological production of 2-phenylethanol. Biotechnol Adv 29:654–660. https://doi.org/10.1016/j.biotechadv.2011.05.001

    CAS  Article  Google Scholar 

  22. Huang CJ, Lee SL, Chou CC (2000) Production and molar yield of 2-phenylethanol by Pichia fermentans L-5 as affected by some medium components. J Biosci Bioeng 90:142–147. https://doi.org/10.1263/jbb.90.142

    CAS  Article  Google Scholar 

  23. Huang CJ, Lee SL, Chou CC (2001) Production of 2-phenylethanol, a flavor ingredient, by Pichia fermentans L-5 under various culture conditions. Food Res Int 34:277–282. https://doi.org/10.1016/S0963-9969(00)00164-2

    CAS  Article  Google Scholar 

  24. Huang XP, Huang GC, Liu L, Xiong DW, Zhang T (2015) The optimization of bioconversion conditions for the production of 2-phenylethanol with Saccharomyces cerevisiae SH003. Food Res Dev 36:154–158. https://doi.org/10.3969/j.issn.1005-6521.2015.22.040

    CAS  Article  Google Scholar 

  25. Kernon J, Skelton L (1993) Current issues in European and US federal food regulations. Trends Food Sci Tech 4:203–209. https://doi.org/10.1016/0924-2244(93)90152-Z

    Article  Google Scholar 

  26. Kim B, Cho BR, Hahn JS (2014) Metabolic engineering of Saccharomyces cerevisiae for the production of 2-Phenylethanol via Ehrlich pathway. Biotechnol Bioeng 111:115–124. https://doi.org/10.1002/bit.24993

    CAS  Article  Google Scholar 

  27. Kirm I, Medina E, Rodriguez X, Cesteros Y, Salagre P, Sueiras JE (2005) Preparation of 2-phenylethanol by catalytic selective hydrogenation of styrene oxide using palladium catalysts. J Mol Catal A-Chem 239:215–221. https://doi.org/10.1016/j.molcata.2005.06.032

    CAS  Article  Google Scholar 

  28. Lima LAD, Diniz RHS, Queiroz MVD, Fietto LG, Silveira WBD (2018) Screening of yeasts isolated from Brazilian environments for the 2-phenylethanol (2-PE) production. Biotechnol Bioproc E 23:326–332. https://doi.org/10.1007/s12257-018-0119-6

    CAS  Article  Google Scholar 

  29. Lu XY, Wang YQ, Zong H, Ji H, Zhuge B, Dong ZL (2016) Bioconversion of L-phenylalanine to 2-phenylethanol by the novel stress-tolerant yeast Candida glycerinogenes WL2002-5. Bioengineered 7:418–423. https://doi.org/10.1080/21655979.2016.1171437

    CAS  Article  PubMed Central  Google Scholar 

  30. Martinez-Avila O, Sanchez A, Font X, Barrena R (2018) Bioprocesses for 2-phenylethanol and 2-phenylethyl acetate production: current state and perspectives. Appl Microbiol Biot 102:9991–10004. https://doi.org/10.1007/s00253-018-9384-8

    CAS  Article  Google Scholar 

  31. Martinez-Avila O, Sanchez A, Font X, Barrena R (2019) Fed-batch and sequential-batch approaches to enhance the bioproduction of 2-phenylethanol and 2-phenethyl acetate in solid-state fermentation residue-based systems. J Agr Food Chem 67:3389–3399. https://doi.org/10.1021/acs.jafc.9b00524

    CAS  Article  Google Scholar 

  32. McGinty D, Letizia CS, Api AM (2012) Fragrance material review on phenethyl butyrate. Food Chem Toxicol 502:S398–S401. https://doi.org/10.1016/j.fct.2012.02.061

    CAS  Article  Google Scholar 

  33. Mei JF, Min H, Lue ZM (2009) Enhanced biotransformation of L-phenylalanine to 2-phenylethanol using an in situ product adsorption technique. Process Biochem 44:886–890. https://doi.org/10.1016/j.procbio.2009.04.012

    CAS  Article  Google Scholar 

  34. Mierzejewska J, Tymoszewska A, Chreptowicz K, Krol K (2017) Mating of 2 laboratory Saccharomyces cerevisiae strains resulted in enhanced production of 2-phenylethanol by biotransformation of l-phenylalanine. J Mol Microb Biotech 27:81–90. https://doi.org/10.1159/000455169

    CAS  Article  Google Scholar 

  35. Nomura K, Ogura H, Imanishi Y (2001) Direct synthesis of 2-phenylethanol by hydrogenation of methyl phenylacetate using homogeneous ruthenium-phosphine catalysis under low hydrogen pressure. J Mol Catal A-Chem 166:345–349. https://doi.org/10.1016/S1381-1169(00)00476-3

    CAS  Article  Google Scholar 

  36. Okuniewska P, Domanska U, Wieckowski M, Mierzejewska J (2017) Recovery of 2-phenylethanol from aqueous solutions of biosynthesis using ionic liquids. Sep Purif Technol 188:530–538. https://doi.org/10.1016/j.seppur.2017.07.071

    CAS  Article  Google Scholar 

  37. Sendovski M, Nir N, Fishman A (2010) Bioproduction of 2-phenylethanol in a biphasic ionic liquid aqueous system. J Agr Food Chem 58:2260–2265. https://doi.org/10.1021/jf903879x

    CAS  Article  Google Scholar 

  38. Seo WT, Ahn KC (2003) Production of phenylethanol from l-phenylalanine by Candida sp S-8. Food Sci Biotechnol 12:644–648

    CAS  Google Scholar 

  39. Shi WK, Wang J, Chen FS, Zhang XY (2019) Effect of Issatchenkia terricola and Pichia kudriavzevii on wine flavor and quality through simultaneous and sequential co-fermentation with Saccharomyces cerevisiae. LWT Food Sci Technol 116:108477. https://doi.org/10.1016/j.lwt.2019.108477

    CAS  Article  Google Scholar 

  40. Shu CH, Chen YJ, Nirwana WOC, Cahyani C (2018) Enhanced bioconversion of l-phenylalanine into 2-phenylethanol via an oxygen control strategy and in situ product recovery. J Chem Technol Biot 93:3035–3043. https://doi.org/10.1002/jctb.5662

    CAS  Article  Google Scholar 

  41. Smith J, Dransfield J (1991) European and US federal food regulations: current issues. Trends Food Sci Tech 2:236–240. https://doi.org/10.1016/0924-2244(91)90703-L

    Article  Google Scholar 

  42. Stark D, Munch T, Sonnleitner B, Marison IW, von Stockar U (2002) Extractive bioconversion of 2-phenylethanol from l-phenylalanine by Saccharomyces cerevisiae. Biotechnol Progr 18:514–523. https://doi.org/10.1021/bp020006n

    CAS  Article  Google Scholar 

  43. Stark D, Zala D, Munch T, Sonnleitner B, Marison IW, von Stockar U (2003) Inhibition aspects of the bioconversion of l-phenylalanine to 2-phenylethanol by Saccharomyces cerevisiae. Enzyme Microb Tech 32:212–223. https://doi.org/10.1016/S0141-0229(02)00237-5

    CAS  Article  Google Scholar 

  44. Suastegui M, Shao Z (2016) Yeast factories for the production of aromatic compounds: from building blocks to plant secondary metabolites. J Ind Microbiol Biot 43:1611–1624. https://doi.org/10.1007/s10295-016-1824-9

    CAS  Article  Google Scholar 

  45. Tian X, Ye R, Wang JW, Chen YF, Cai BG, Guan SM, Rong SF, Li QQ (2015) Effects of aroma quality on the biotransformation of natural 2-phenylethanol produced using ascorbic acid. Electron J Biotechn 18:286–290. https://doi.org/10.1016/j.ejbt.2015.05.003

    CAS  Article  Google Scholar 

  46. Wang DW, Ma YS, Li N, Jin FS (2016) Influence of aging time on aroma components and full-bodied flavor of fermented Lentinula edodes wine. Food Sci 37:80–85. https://doi.org/10.7506/spkx1002-6630-201614014

    CAS  Article  Google Scholar 

  47. Wang H, Dong Q, Meng C, Shi XA, Guo Y (2011) A continuous and adsorptive bioprocess for efficient production of the natural aroma chemical 2-phenylethanol with yeast. Enzyme Microb Tech 48:404–407. https://doi.org/10.1016/j.enzmictec.2011.01.006

    CAS  Article  Google Scholar 

  48. Wang L, Jiang W, Liu YM, Liu X, Wang DL, Song HL, Liu MY (2015) Analysis of aroma-active compounds in hop by GC–O–MS. Chin J Anal Lab 34:640–644. https://doi.org/10.13595/j.cnki.issn1000-0720.2015.0139

    CAS  Article  Google Scholar 

  49. Xu D, Fan GS, Fu ZL, Ma C, Sun XT, Yang R, Sun BG, Li XT (2017) Screening of a high-yield beta-phenylethanol yeast and optimization of its cultural conditions. Sci Technol Food Ind 38:151–158. https://doi.org/10.13386/j.issn1002-0306.2017.05.020

    Article  Google Scholar 

  50. Yadav GD, Lawate YS (2013) Hydrogenation of styrene oxide to 2-Phenyl ethanol over polyurea microencapsulated mono- and bimetallic nanocatalysts: sctivity, selectivity, and kinetic modeling. Ind Eng Chem Res 52:4027–4039. https://doi.org/10.1021/ie302587j

    CAS  Article  Google Scholar 

  51. Zhao CQ, Yan XL, Yang ST, Chen FF (2017) Screening of Bacillus strains from Luzhou-flavor liquor making for high-yield ethyl hexanoate and low-yield propanol. Lwt-Food Sci Technol 77:60–66. https://doi.org/10.1016/j.lwt.2016.11.035

    CAS  Article  Google Scholar 

  52. Zhao DR, Zhang LM, Zhang FG, Sun JY, Sun XT, Huang MQ, Zheng FP, Sun BG (2016) Analysis of sulfur-containing compounds in sesame-flavor Chinese liquor by solid phase microextraction and liquid-liquid extraction coupled with GC–MS. Food Sci 37:99–106. https://doi.org/10.7506/spkx1002-6630-201622014

    CAS  Article  Google Scholar 

  53. Zhou WJ, Wang P, Zhan P, Tian HL (2017) Screening and identification of flavor characteristics of three pear wines based on odor activity value using partial least squares regression. Food Sci 38:138–143. https://doi.org/10.7506/spkx1002-6630-201714021

    Article  Google Scholar 

  54. Zhou WJ, Zhang F, Wang P, Zhan P, Tian HL (2018) GC-MS/GC-O combined with chemometrics for the screening and identification of aroma characteristics of Korla pear wine. Food Sci 39:222–227. https://doi.org/10.7506/spkx1002-6630-201810034

    Article  Google Scholar 

Download references

Acknowledgements

We thank Andrew Dingley for insightful discussions and providing language help. This research was supported by the National Natural Science Foundation of China (No. 31701592, 31830069, and 31671798), General Project of Scientific Research Program of Beijing Municipal Education Commission (grant number KM201910011006/PXM2019_014213_000007) and Quality Construction of Talents Training/First-class Speciality Construction/Food Science and Engineering (PXM2019_014213_000010).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Xiuting Li.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Ethical statement

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fan, G., Cheng, L., Fu, Z. et al. Screening of yeasts isolated from Baijiu environments for 2-phenylethanol production and optimization of production conditions. 3 Biotech 10, 275 (2020). https://doi.org/10.1007/s13205-020-02267-5

Download citation

Keywords

  • 2-Phenylethanol
  • Baijiu
  • L-Phenylalanine
  • Optimization
  • Pichia kudriavzevii