Skip to main content

Advertisement

Log in

Overcoming challenges in lignocellulosic biomass pretreatment for second-generation (2G) sugar production: emerging role of nano, biotechnological and promising approaches

  • Review Article
  • Published:
3 Biotech Aims and scope Submit manuscript

Abstract

Production of green chemicals and biofuels in biorefineries is the potential alternative for petrochemicals and gasoline in transitioning of petro-economy into bioeconomy. However, an efficient biomass pretreatment process must be considered for the successful deployment of biorefineries, mainly for use of lignocellulosic raw materials. However, biomass recalcitrance plays a key role in its saccharification to obtain considerable sugar which can be converted into ethanol or other biochemicals. In the last few decades, several pretreatment methods have been developed, but their feasibility at large-scale operations remains as a persistent bottleneck in biorefineries. Pretreatment methods such as hydrodynamic cavitation, ionic liquids, and supercritical fluids have shown promising results in terms of either lignin or hemicellulose removal, thus making remaining carbohydrate fraction amenable to the enzymatic hydrolysis for clean and high amount of fermentable sugar production. However, their techno-economic feasibility at industrial scale has not been yet studied in detail. Besides, nanotechnological-based technologies could play an important role in the economically viable 2G sugar production in future. Considering these facts, in the present review, we have discussed the existing promising pretreatment methods for lignocellulosic biomass and their challenges, besides this strategic role of nano and biotechnological approaches towards the viability and sustainability of biorefineries is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aditiya HB, Mahlia TMI, Chong WT, Nur H, Sebayang AH (2016) Second generation bioethanol production: a critical review. Renew Sust Energy Rev 66:631–653

    CAS  Google Scholar 

  • Akhtar N, Gupta K, Goyal D, Goyal A (2016) Recent advances in pretreatment technologies for efficient hydrolysis of lignocellulosic biomass. Environ Prog Sustain Energy 35(2):489–511

    CAS  Google Scholar 

  • Alvira P, Tomás-Pejó E, Ballesteros M, Negro MJ (2010) Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresour Technol 101:4851–4861

    CAS  PubMed  Google Scholar 

  • Antunes FAF, Chandel AK, Milessi TSS, Santos JC, Rosa CA, DA Silva SS (2014) Bioethanol production from sugarcane bagasse by a novel Brazilian pentose fermenting yeast Scheffersomyces shehatae UFMG-HM 52.2: evaluation of fermentation medium. Int J Chem Eng 2014:1–8

    Google Scholar 

  • Antunes FAF, Santos JC, Cunha MAA, Brumano LP, Milessi TSS, Teran-Hilares R et al (2017) Biotechnological production of xylitol from biomass. In: Fang Z, Smith Q (eds) Biofuels and biorefineries, 1st edn. Springer Nature, Singapore, pp 311–342

    Google Scholar 

  • Arora A, Priya S, Sharma P, Sharma S, Nain L (2016) Evaluating biological pretreatment as a feasible methodology for ethanol production from paddy straw. Biocat Agric Biotechnol 8:66–72

    Google Scholar 

  • Auxenfans T, Crônier D, Chabbert B, Paës G (2017) Understanding the structural and chemical changes of plant biomass-following steam explosion pretreatment. Biotechnol Biofuels 10:36. https://doi.org/10.1186/s13068-017-0718-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Badve MP, Gogate PR, Pandit AB, Levente C (2014) Hydrodynamic cavitation as a novel approach for delignification of wheat straw for paper manufacturing. Ultrason Sonochem 21:162–168

    CAS  PubMed  Google Scholar 

  • Balan V (2014) Current challenges in commercially producing biofuels from lignocellulosic biomass. ISRN Biotechnol 2014:1–31

    Google Scholar 

  • Benazzi T, Calgaroto S, Rosa CD, Oliveira JV, Mazutti MA (2013) Hydrolysis of sugarcane bagasse using supercritical carbon dioxide to obtain fermentable sugars. J Chem Technol Biotechnol 88:1766–1768

    CAS  Google Scholar 

  • Bernardinelli OD, Lima MA, Rezende CA, Polikarpov I, Azevedo ER (2015) Quantitative 13C MultiCP solip-state NMR as a tool for evaluation of cellulose crystallinity index measured directly inside sugarcane biomass. Biotechnol Biofuels 8:110

    PubMed  PubMed Central  Google Scholar 

  • Bludworth J, Carl Knopf F (1993) Reactive extraction of lignin from wood using supercritical ammonia-water mixtures. J Supercrit Fluids 6:249–254

    CAS  Google Scholar 

  • Brandt-Talbot A, Gschwend FJV, Fennell PS, Lammens TM, Tan B, Weale J et al (2017) An economically viable ionic liquid for the fractionation of lignocellulosic biomass. Green Chem 19:1–26

    Google Scholar 

  • Canilha L, Chandel AK, Milessi TSS, Antunes FAF, Freitas WLC, Felipe MGA et al (2012) Bioconversion of sugarcane biomass into ethanol: An overview about composition, pretreatment methods, detoxification of hydrolysates, enzymatic saccharification, and ethanol fermentation. J Biomed Biotechnol 2012:1–15

    Google Scholar 

  • Cardona E, Rios J, Peña J, Rios L (2014) Effects of the pretreatment method on enzymatic hydrolysis and ethanol fermentability of the cellulosic fraction from elephant grass. Fuel 118:41–47

    Google Scholar 

  • Carpio LGT, Souza FS (2017) Optimal allocation of sugarcane bagasse for producing bioelectricity and second generation ethanol in Brazil: scenarios of cost reductions. Renew Energ 111:771–780

    CAS  Google Scholar 

  • Cavalett O, Chagas MF, Junqueira TL, Watanabe MDB, Bonomi A (2017) Environmental impacts of technology learning curve for cellulosic ethanol in Brazil. Ind Crops Prod 106:31–39

    Google Scholar 

  • Chandel AK, Giese EC, Antunes FFA, Oliveira IS, Silva SS (2012) Pretreatment of sugarcane bagasse and leaves: Unlocking the treasury of “Green currency”. In: Zhen F (ed) Pretreatment techniques for biofuels and biorefineries. Springer-Verlag, Springer Asia Limited, Beijing, pp 369–391

    Google Scholar 

  • Chandel AK, Silva SS, Singh OV (2013) Detoxification of lignocellulose hydrolysates: Biochemical and metabolic engineering toward white biotechnology. BioEnergy Res 6:388–401

    CAS  Google Scholar 

  • Chandel AK, Antunes FAF, Anjos V, Bell MJV, Rodrigues LN, Polikarpov I et al (2014) Multi-scale structural and chemical analysis of sugarcane bagasse in the process of sequential acid-base pretreatment and ethanol production by Scheffersomyces shehatae and Saccharomyces cerevisiae. Biotechnol Biofuels 7:63

    PubMed  PubMed Central  Google Scholar 

  • Chandel AK, Garlapati VK, Singh AK, Antunes FAF, Silva SS (2018) The path forward for lignocellulose biorefineries: Bottlenecks, solutions, and perspective on commercialization. Bioresour Technol 264:370–381

    CAS  PubMed  Google Scholar 

  • Chornet E, Overend RP (1988) Phenomenological kinetics and reaction engineering aspects of steam/aqueous treatments. In: Focher B, Marzetti A, Crescenzi V (eds) Steam explosion techniques—fundamentals and industrial applications : proceedings of the international workshop on steam explosion techniques: fundamentals and industrial applications, Milan, Italy. CRC Press pp 21–58

  • Conab-Companhia Nacional de abastecimento (2019) BOLETIM DA SAFRA DE GRÃOS. 6º Levantamento-Safra 2018/19. Available in https://www.conab.gov.br/info-agro/safras/graos/boletim-da-safra-de-graos. Accessed 6 Apr 2019

  • Cong B, Wang N, Liu S, Liu F, Yin X, Shen J (2017) Isolation, characterization and transcriptome analysis of a novel antarctic Aspergillus sydowii strain MS-19 as a potential lignocellulosic enzyme source. BMC Microbiol 17:129

    PubMed  PubMed Central  Google Scholar 

  • Coseri S (2017) Cellulose: To depolymerize… or not to? Biotechnol Adv 35:251–266

    CAS  PubMed  Google Scholar 

  • Costa THF, Masarin F, Bonifácio TO, Milagres AMF, Ferraz A (2013) The enzymatic recalcitrance of internodes of sugar cane hybrids with contrasting lignin contents. Ind Crops Prod 51:202–211

    CAS  Google Scholar 

  • Costa THF, Vega-Sanchez ME, Milagres AMF, Scheller HV, Ferraz A (2016) Tissue-specific distribution of hemicelluloses in six different sugarcane hybrids as related to cell wall recalcitrance. Biotechnol Biofuels 9:99

    PubMed  PubMed Central  Google Scholar 

  • Daza Serna LV, Orrego Alzate CE, Cardona Alzate CA (2016) Supercritical fluids as a green technology for the pretreatment of lignocellulosic biomass. Bioresour Technol 199:113–120

    CAS  PubMed  Google Scholar 

  • de Vries RP, Visser J (2001) Aspergillus enzymes involved in degradation of plant cell wall polysaccharides. Microbiol Mol Biol Rev 65(4):4497–4522

    Google Scholar 

  • dos Santos LV, Grassi MCB, Gallardo JCM, Pirolla RAS, Calderon LL, Carvalho-netto OV et al (2016) Second-generation ethanol: the need is becoming a reality. Ind Biotechnol 12(1):40–57

    Google Scholar 

  • Driemeier C, Pimenta MTB, Rocha GJM, Oliveira MM, Mello DB, Maziero P et al (2011) Evolution of cellulose crystals during prehydrolysis and soda delignification of sugarcane lignocellulose. Cellulose 18:1509–1519

    CAS  Google Scholar 

  • Duque LEP (2013) Acid-functionalized nanoparticles for biomass hydrolysis PhD thesis submitted to Department of Biological & Agricultural Engineering College of Engineering, Kansas State University Manhattan, Kansas

  • E-PIC S.r.l (2016) Biomass pretreatment (BIOGAS) [Internet]. Mongrando (BI). http://www.epic-srl.com/en/cavitation-technologies/biomass-pretreatment-biogas

  • Gill CS, Price BA, Jones CW (2007) Sulfonic acid-functionalized silica-coated magnetic nanoparticle catalysts. J Catal 251:145–152

    CAS  Google Scholar 

  • Gogate PR (2016) Greener processing routes for reactions and separations based on use of ultrasound and hydrodynamic cavitation. In: Stefanidis G, Stankiewicz A (eds) Alternative energy sources for green chemistry. Thomas Graham House, RSC Publishing Blog, Cambridge

    Google Scholar 

  • Gogate PR, Pandit AB (2000) Engineering design methods for cavitation reactors II: hydrodynamic cavitation. AIChE J 46:1641–1649

    CAS  Google Scholar 

  • Gogate PR, Pandit AB (2005) A review and assessment of hydrodynamic cavitation as a technology for the future. Ultrason Sonochem 12:21–27

    CAS  PubMed  Google Scholar 

  • Grethlein HE, Allen DC, Converse AO (1984) A comparative study of the enzymatic hydrolysis of acid-pretreated white pine and mixed hardwood. Biotechnol Bioeng 26:1498–1505

    CAS  PubMed  Google Scholar 

  • Gupta A, Verma JP (2015) Sustainable bio-ethanol production from agro-residues: a review. Renew Sust Energy Rev 41:550–567

    CAS  Google Scholar 

  • Huang PJ, Chang KL, Hsieh JF, Chen ST (2015) Catalysis of rice straw hydrolysis by the combination of immobilized cellulase from Aspergillus niger on β-cyclodextrin-Fe3O4 nanoparticles and ionic liquid. BioMed Res Int 40:9103. https://doi.org/10.1155/2015/409103

    Article  CAS  Google Scholar 

  • Jia J, Zhang W, Yang Z, Yang X, Wang N, Yu X (2017) Novel magnetic cross-linked cellulase aggregates with a potential application in lignocellulosic biomass bioconversion. Molecules 22:269

    PubMed Central  Google Scholar 

  • Joko T, Subandi A, Kusumandari N, Wibowo A, Priyatmojo A (2014) Activities of plant cell wall-degrading enzymes by bacterial soft rot of orchid. Arch Phytopathol Plant Protect 47(10):1239–1250

    CAS  Google Scholar 

  • Jönsson LJ, Martín C (2016) Pretreatment of lignocellulose: Formation of inhibitory by-products and strategies for minimizing their effects. Bioresour Technol 199:103–112

    PubMed  Google Scholar 

  • Kapdan IK, Kargi F, Oztekin R (2011) Effects of operating parameters on acid hydrolysis of ground wheat starch: maximization of the sugar yield by statistical experiment design. Starch-Stärke 63:311–318

    CAS  Google Scholar 

  • Kaur M, Aggarwal NK (2017) Screening of alternaria pathogens associated with Parthenium hysterophorus for the production of lignocellulolytic enzymes. Bioeng Biosci 5(1):14–23

    CAS  Google Scholar 

  • Kim I, Lee I, Hwang T, Han JI (2015) Hydrodynamic cavitation as a novel pretreatment approach for bioethanol production from reed. Bioresour Technol 192:335–339

    CAS  PubMed  Google Scholar 

  • Kubicek CP, Starr TL, Glass NL (2014) Plant cell wall-degrading enzymes and their secretion in plant-pathogenic fungi. Annu Rev Phytopathol 52:427–451

    PubMed  Google Scholar 

  • Lai CY (2015) Mesoporous materials-based catalysts for chemical hydrolysis of polysaccharides. Thermodyn Catal 6:3

    Google Scholar 

  • Lan W, Liu CF, Sun RC (2011) Fractionation of bagasse into cellulose, hemicelluloses, and lignin with ionic liquid treatment followed by alkaline extraction. J Agric Food Chem 59:8691–8701

    CAS  PubMed  Google Scholar 

  • Lara-Marquez A, Zavala-Paramo MG, Lopez-Romero E, Camacho HC (2011) Biotechnological potential of pectinolytic complexes of fungi. Biotechnol Lett 33:859–868

    CAS  PubMed  Google Scholar 

  • Li H, Zhang Q, Riisager A, Yang S (2016) Catalytic valorization of cellulose and cellobiose with nanoparticles. Curr Nanosci 11(1):1–14

    Google Scholar 

  • Liang J, Chen X, Wanga L, Weia X, Wang H, Lu S et al (2017) Subcritical carbon dioxide-water hydrolysis of sugarcane bagasse pith for reducing sugars production. Bioresour Technol 228:147–155

    CAS  PubMed  Google Scholar 

  • Liu B, Zhang Z (2016) Catalytic conversion of biomass into chemicals and fuels over magnetic catalysts. ACS Catal 6(1):326–338

    CAS  Google Scholar 

  • Liu Z, Longfei L, Cheng L, Airong X (2017) Saccharification of cellulose in the ionic liquids and glucose recovery. Renewable Energy 106:99–102

    CAS  Google Scholar 

  • Madison MJ, Coward-Kelly G, Liang C, Karim N, Falls M, Holtzapple MT (2017) Mechanical pretreatment of biomass-part i: Acoustic and hydrodynamic cavitation. Biomass Bioenergy 98:135–141

    CAS  Google Scholar 

  • Marques F (2018) Bioenergia. Obstaculos no caminho. Available in: http://revistapesquisa.fapesp.br/2018/06/18/obstaculos-no-caminho/. Accessed 25 March 2018

  • Maurya DP, Singla A, Negi S (2015) An overview of key pretreatment processes for biological conversion of lignocellulosic biomass to bioethanol. 3 Biotech 5:597–609

    PubMed  PubMed Central  Google Scholar 

  • McHardy J, Sawan SP (1998) Supercritical fluid cleaning: fundamentals, technology and applications. Noyes Publications, New Jersey

    Google Scholar 

  • Mirmohamadsadegh S, Chen Z, Wan C (2016) Reducing biomass recalcitrance via mild sodium carbonate pretreatment. Bioresour Technol 209:386–390

    Google Scholar 

  • Moholkar VS, Pandit AB (2001) Modeling of hydrodynamic cavitation reactors: a unified approach. Chem Eng Sci 56:6295–6302

    CAS  Google Scholar 

  • Mohtar SS, Busu TNZTM, Noor AMM, Shaari N, Mat H (2017) An ionic liquid treatment and fractionation of cellulose, hemicellulose and lignin from oil palm empty fruit bunch. Carbohydr Polym 166:291–299

    CAS  PubMed  Google Scholar 

  • Morais ARC, Mata AC, Bogel-Lukasik R (2014) Integrated conversion of agroindustrial residue with high pressure CO2 within the biorefinery concept. Green Chem 16:4312–4322

    CAS  Google Scholar 

  • Nakashima K, Evi Y, Shibasaki-Kitakawa N, Soyama H, Yonemoto R (2016) Hydrodynamic cavitation reactor for efficient pretreatment of lignocellulosic biomass. Ind Eng Chem Res 55:1866–1871

    CAS  Google Scholar 

  • Narayanaswamy N, Faik A, Goetz DJ, Gu T (2011) Supercritical carbon dioxide pretreatment of corn stover and switchgrass for lignocellulosic ethanol production. Bioresour Technol 102:6995–7000

    CAS  PubMed  Google Scholar 

  • NCGA (2018) The national corn growers association. U.S. corn production 1938–2018. http://www.worldofcorn.com/pdf/WOC-2019.pdf

  • Neves PV, Pitarelo AP, Ramos LP (2016) Production of cellulosic ethanol from sugarcane bagasse by steam explosion: Effect of extractives content, acid catalysis and different fermentation technologies. Bioresour Technol 208:184–194

    CAS  PubMed  Google Scholar 

  • Nguyen TY, Cal CM, Kumar R, Wyman CE (2015) Co-solvent pretreatment reduces costly enzyme requirements for high sugar and ethanol yields from lignocellulosic biomass. Chem Sus Chem 8:1716–1725

    CAS  Google Scholar 

  • Njoku SI, Ahring BK, Uellendahl H (2012) Pretreatment as the crucial step for a cellulosic ethanol biorefinery: Testing the efficiency of wet explosion on different types of biomass. Bioresour Technol 124:105–110

    CAS  PubMed  Google Scholar 

  • Ochiai A, Itoh T, Kawamata A, Hashimoto W, Murata K (2007) Plant cell wall degradation by saprophytic Bacillus subtilis strains: Gene clusters responsible for rhamnogalacturonan depolymerization. Appl Environ Microbiol 73(12):3803–3813

    CAS  PubMed  PubMed Central  Google Scholar 

  • Oliva-Taravilla A, Moreno AD, Demuez M, Ibarra D, Tomas-Pejo E, Gonzalez-Fernandez C et al (2015) Unraveling the effects of laccase treatment on enzymatic hydrolysis of steam-exploded wheat straw. Bioresour Technol 175:209–215

    CAS  PubMed  Google Scholar 

  • Ozoneck J (2012) Application of hydrodynamic cavitation in environmental engineering. CRC Press, Taylor & Francis Group, New York

    Google Scholar 

  • Pathak VM, Navneet (2017) Review on the current status of polymer degradation: A microbial approach. Bioresour Bioprocess 4:15

    Google Scholar 

  • Patil PN, Gogate PR, Csoka L, Dregelyi-Kiss A, Horvath M (2016) Intensification of biogas production using pretreatment based on hydrodynamic cavitation. Ultrason Sonochem 30:79–86

    CAS  PubMed  Google Scholar 

  • Pena L, Ikenberry M, Ware B, Hohn KL, Boyle D, Sun XS et al (2011) Cellobiose hydrolysis using acid-functionalized nanoparticles. Biotechnol Bioproc Eng 16:1214–1222

    CAS  Google Scholar 

  • Pena L, Ikenberry M, Hohn KL, Wang D (2012) Acid-functionalized nanoparticles for pretreatment of wheat straw. J Biomater Nanobiotechnol 3:342–352

    CAS  Google Scholar 

  • Pena L, Hohn KL, Li J, Sun XS, Wang D (2014) Synthesis of propyl-sulfonic acid-functionalized nanoparticles as catalysts for cellobiose hydrolysis. J Biomater Nanobiotechnol 5:241–253

    Google Scholar 

  • Phan DT, Tan CS (2014) Innovative pretreatment of sugarcane bagasse using supercritical CO2 followed by alkaline hydrogen peroxide. Bioresour Technol 167:192–197

    CAS  PubMed  Google Scholar 

  • Pielhop T, Amgarten J, von Rohr PR, Studer MH (2016) Steam explosion pretreatment of softwood: the effect of the explosive decompression on enzymatic digestibility. Biotechnol Biofuels 9:152

    PubMed  PubMed Central  Google Scholar 

  • Rai M, Santos JC, Soler MF, Marcelino PRF, Brumano LP, Ingle AP et al (2016) Strategic role of nanotechnology for production of bioethanol and biodiesel. Nanotechnol Rev 5(2):231–250

    CAS  Google Scholar 

  • Ramos AM, Gally M, Szapiroa G, Itzcovicha T, Carabajal M, Levina L (2016) In vitro growth and cell wall degrading enzyme production by Argentinean isolates of Macrophomina phaseolina, the causative agent of charcoal rot in corn. Rev Argent Microbiol 48(4):267–273

    PubMed  Google Scholar 

  • Raza-Amin F, Khalid H, Zhang H, Rahman SU, Zhang R, Liu G, Chen C (2017) Pretreatment methods of lignocellulosic biomass for anaerobic digestion. AMB Express 7:72

    Google Scholar 

  • Reyes T, Bandyopadhyay SS, McCoy BJ (1989) Extraction of lignin from wood with supercritical alcohols. J Supercrit Fluids 2:80–84

    CAS  Google Scholar 

  • Saharan VK, Manava R, Aqeel M, Pandit AB (2013) Effect of geometry of hydrodynamically cavitating device on degradation of orange-G. Ultrason Sonochem 20:345–353

    CAS  PubMed  Google Scholar 

  • Saloheimo M, Paloheimo M, Hakola S, Pere J, Swanson B, Nyyssönen E et al (2002) Swollenin, a Trichoderma reesei protein with sequence similarity to the plant expansins, exhibits disruption activity on cellulosic materials. Eur J Biochem 269:4202–4211

    CAS  PubMed  Google Scholar 

  • Sandford K, Chotani G, Danielson N, Zahn JA (2016) Scaling up of renewable chemicals. Curr Opin Biotechnol 38:112–122

    Google Scholar 

  • Santos JC, Marton JM, Felipe MGA (2014) Continuous system of combined columns of ion exchange resins and activated charcoal as a new approach for the removal of toxics from sugar cane bagasse hemicellulosic hydrolysate. Ind Eng Chem Res 53:16494–16501

    CAS  Google Scholar 

  • Silva SPM, Morais AR, Bogel-Lukasik R (2014) The CO2-assisted autohydrolysis of wheat straw. Green Chem 16:238–246

    Google Scholar 

  • Silva DF, Carvalho AF, Shinya TY, Mazali GS, Herculano RD, Oliva-Neto P (2017) Recycle of immobilized endocellulases in different conditions for cellulose hydrolysis. Enzyme Res. https://doi.org/10.1155/2017/4362704

    Article  PubMed  PubMed Central  Google Scholar 

  • Sindhu R, Binod P, Pandey A (2016) Biological pretreatment of lignocellulosic biomass: an overview. Bioresour Technol 199:76–82

    CAS  PubMed  Google Scholar 

  • Song Q, Mao Y, Wilkins M, Segato F, Prade R (2016) Cellulase immobilization on superparamagnetic nanoparticles for reuse in cellulosic biomass conversion. AIMS Bioeng 3(3):264–276

    CAS  Google Scholar 

  • Sousa LC, Jin M, Chundawat SPS, Bokade V, Tang X, Azarpira A et al (2016) Next-generation ammonia pretreatment enhances cellulosic biofuel production. Energy Environ Sci 9:1215–1223

    Google Scholar 

  • Srivastava N, Srivastava M, Mishra PK, Ramteke PW (2016) Application of ZnO nanoparticles for improving the thermal and pH stability of crude cellulase obtained from Aspergillus fumigatus AA001. Front Microbiol 7:514

    PubMed  PubMed Central  Google Scholar 

  • Su TC, Fang Z, Zhang F, Luo J, Li XK (2015) Hydrolysis of selected tropical plant wastes catalyzed by a magnetic carbonaceous acid with microwave. Sci Rep 5:17538

    PubMed  PubMed Central  Google Scholar 

  • Sultana A, Kumar A, Harfield D (2010) Development of agri–pellet production cost and optimum size. Bioresour Technol 101(14):5609–5621

    CAS  PubMed  Google Scholar 

  • Sun N, Rahman M, Qin Y, Maxim ML, Rodriguez H, Rogers RD (2009) Complete dissolution and partial delignification of wood in the ionic liquid 1-ethyl-3-methylimidazolium acetate. Green Chem 11:646–655

    CAS  Google Scholar 

  • Terán-Hilares R, de Almeida GFaria, Ahmed MAjaz, Antunes FAF, da Silva Silvério S, Han J et al (2017a) Hydrodynamic cavitation as an efficient pretreatment method for lignocellulosic biomass: A parametric study. Bioresour Technol 235:301–308

    PubMed  Google Scholar 

  • Terán-Hilares R, Ramos L, Silva SS, Dragone G, Mussatto SI, Santos JC (2017b) Hydrodynamic cavitation as a strategy to enhance the efficiency of lignocellulosic biomass pretreatment. Crit Rev Biotechnol 38:483–493

    PubMed  Google Scholar 

  • Thomson Reuters (2019) Web of Science, https://www.webofknowledge.com/. Accessed 4 Feb 2019

  • Tian C, Beeson WT, Iavarone AT, Sun J, Marletta MA, Cate JHD et al (2009) Systems analysis of plant cell wall degradation by the model filamentous fungus Neurospora crassa. Proc Natl Acad Sci 106:22157–22162

    CAS  PubMed  Google Scholar 

  • Uppugundla N, Sousa LC, Chundawat SPS, Yu X, Simmons B, Singh A et al (2014) A comparative study of ethanol production using dilute acid, ionic liquid and AFEX™ pretreated corn stover. Biotechnol Biofuels 7:72

    PubMed  PubMed Central  Google Scholar 

  • USDA-United States Department of Agriculture (2019) World agricultural production. Available in https://apps.fas.usda.gov/psdonline/circulars/production.pdf. Accessed 6 Apr 2019

  • Wang W (2012) Nanotechnology applications for biomass pretreatment, functional material fabrication and surface modification. Dissertation submitted to Michigan State University

  • Wang H, Covarrubias J, Prock H, Wu X, Wang D, Bossmann SH (2015) Acid-functionalized magnetic nanoparticle as heterogeneous catalysts for biodiesel synthesis. J Phys Chem C 119(46):26020–26028

    CAS  Google Scholar 

  • Xu C, Singh D, Dorgan KM, Zhang X, Chen S (2015) Screening of ligninolytic fungi for biological pretreatment of lignocellulosic biomass. Can J Microbiol 61(10):745–752

    CAS  PubMed  Google Scholar 

  • Yoo CG, Pu Y, Ragauskas AJ (2017) Ionic liquids: Promising green solvents for lignocellulosic biomass utilization. Curr Opin Green Sustain Chem 5:5–11

    Google Scholar 

  • Zabed H, Sahu JN, Boyce AN, Faruq G (2016) Fuel ethanol production from lignocellulosic biomass: An overview on feedstocks and technological approaches. Renew Sustain Energy Rev 66:751–774

    CAS  Google Scholar 

  • Zhang Z, Rackemann DW, Doherty WO, O’Hara IM (2013) Glycerol carbonate as a green solvent for pretreatment of sugarcane bagasse. Biotechnol Biofuels 6:153

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang C, Xu W, Yan P, Liu X, Zhang C (2015a) Overcome the recalcitrance of eucalyptus bark to enzymatic hydrolysis by concerted ionic liquid pretreatment. Process Biochem 50:2208–2214

    CAS  Google Scholar 

  • Zhang W, Qiu J, Feng H, Zang L, Sakai E (2015b) Increase in stability of cellulase immobilized on functionalized magnetic nanospheres. J Magn Magn Mater 375:117–123

    CAS  Google Scholar 

  • Zheng Y, Lin H, Tsao GT (1995) Supercritical carbon dioxide explosion as a pretreatment for cellulose hydrolysis. Biotechnol Lett 17:845–850

    CAS  Google Scholar 

  • Zheng Y, Lin H, Tsao GT (1998) Pretreatment for cellulose hydrolysis by carbon dioxide explosion. Biotechnol Prog 14:890–896

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq-Brazil, processes number 154193/2018-6 and 449609/2014-6), FAPESP-São Paulo Research Foundation (#2014/27055-2;#2016/10636-8;#2016/23758-4;#2017/11086-4) and CAPES, by the financial resources.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Júlio César dos Santos.

Ethics declarations

Conflict of interest

Authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Antunes, F.A.F., Chandel, A.K., Terán-Hilares, R. et al. Overcoming challenges in lignocellulosic biomass pretreatment for second-generation (2G) sugar production: emerging role of nano, biotechnological and promising approaches. 3 Biotech 9, 230 (2019). https://doi.org/10.1007/s13205-019-1761-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13205-019-1761-1

Keywords

Navigation