Enzymatic hydrolysis of tropical weed xylans using xylanase from Aureobasidium melanogenum PBUAP46 for xylooligosaccharide production

Abstract

The maximum yield of xylanase from Aureobasidium melanogenum PBUAP46 was 5.19 ± 0.08 U ml−1 when cultured in a production medium containing 3.89% (w/v) rice straw and 0.75% (w/v) NaNO3 as carbon and nitrogen sources, respectively, for 72 h. This enzyme catalyzed well and was relatively stable at pH 7.0 and room temperature (28 ± 2 °C). The produced xylanase was used to hydrolyze xylans from four tropical weeds, whereupon it was found that the highest amounts of reducing sugars in the xylan hydrolysates of cogon grass (Imperata cylindrical), Napier grass (Pennisetum purpureum), and vetiver grass (Vetiveria zizanioides) were at 20.44 ± 0.84, 17.50 ± 0.29, and 19.44 ± 0.40 mg 100 mg xylan−1, respectively, but it was not detectable in water hyacinth (Eichhornia crassipes) hydrolysate. The highest combined amount of xylobiose and xylotriose was obtained from vetiver grass; thus, it was selected for further optimization. After optimization, xylanase digestion of vetiver grass xylan at 27.94 U g xylan−1 for 92 h 19 min gave the highest amount of reducing sugars (23.65 ± 1.34 mg 100 mg xylan−1), which were principally xylobiose and xylotriose. The enriched XOs exhibited a prebiotic property, significantly stimulating the growth of Lactobacillus brevis and L. casei by a factor of up to 3.5- and 6.5-fold, respectively, compared to glucose.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Akpinar O, Erdogan K, Bostanci S (2009) Production of xylooligosaccharides by controlled acid hydrolysis of lignocellulosic materials. Carbohydr Res 344:660–666. https://doi.org/10.1016/j.carres.2009.01.015

    CAS  Article  PubMed  Google Scholar 

  2. Bankeeree W, Lotrakul P, Prasongsuk S, Chaiareekij S, Eveleigh DE, Kim SW, Punnapayak H (2014) Effect of polyols on thermostability of xylanase from a tropical isolate of Aureobasidium pullulans and its application in prebleaching of rice straw pulp. Springerplus 3:37. https://doi.org/10.1186/2193-1801-3-37

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  3. Bankeeree W, Akada R, Lotrakul P, Punnapayak H, Prasongsuk S (2018) Enzymatic hydrolysis of black liquor xylan by a novel xylose-tolerant, thermostable β-xylosidase from a tropical strain of Aureobasidium pullulans CBS 135684. Appl Biochem Biotechnol 184:919–934

    CAS  Article  Google Scholar 

  4. Carvalho AFA, Neto PDO, da Silva DF, Pastore GM (2013) Xylooligosaccharides from lignocellulosic materials: chemical structure, health benefits and production by chemical and enzymatic hydrolysis. Food Res Int 51:75–85. https://doi.org/10.1016/j.foodres.2012.11.021

    CAS  Article  Google Scholar 

  5. Chapla D, Divecha J, Madamwar D, Shah A (2010) Utilization of agroindustrial waste for xylanase production by Aspergillus foetidus MTCC 4898 under solid state fermentation and its application in saccharification. Biochem Eng J 49:361–369. https://doi.org/10.1016/j.bej.2010.01.012

    CAS  Article  Google Scholar 

  6. Chapla D, Pandit P, Shah A (2012) Production of xylooligosaccharides from corncob xylan by fungal xylanase and their utilization by probiotics. Bioresour Technol 115:215–221. https://doi.org/10.1016/j.biortech.2011.10.083

    CAS  Article  PubMed  Google Scholar 

  7. Chapla D, Dholakiya S, Madamwar D, Shah A (2013) Characterization of purified fungal endoxylanase and its application for production of value added food ingredient from agroresidues. Food Bioprod Proc 91:682–692. https://doi.org/10.1016/j.fbp.2013.08.005

    CAS  Article  Google Scholar 

  8. Crittenden R, Karppinen S, Ojanen S, Tenkanen M, Fagerstrom R, Matto J, Saarela M, Mattila-Sandholm T, Poutanen K (2002) In-vitro fermentation of cereal dietary fiber carbohydrates by probiotic and intestinal bacteria. J Sci Food Agric 82:781–789. https://doi.org/10.1002/jsfa.1095

    CAS  Article  Google Scholar 

  9. De Man JC, Rogosa M, Sharpe ME (1960) A medium for the cultivation of lactobacilli. J Appl Bacteriol 23:130–135

    Article  Google Scholar 

  10. Goering HK, Van Soest PJ (1970) Forage fiber analysis (apparatus, reagent, producers and some applications). In: Agriculture handbook No.379. Agriculture Research Service USDA, Washington

    Google Scholar 

  11. Gullón P, Moura P, Esteves M, Girio FM, Domínguez H, Parajó JC (2008) Assessment on the fermentability of xylooligosaccharides from rice husks by probiotic bacteria. J Agric Food Chem 56:7482–7487. https://doi.org/10.1021/jf800715b

    CAS  Article  PubMed  Google Scholar 

  12. Guo GL, Hsu DC, Chen WH, Chen WH, Hwang WS (2009) Characterization of enzymatic saccharification for acid-pretreated lignocellulosic materials with different lignin composition. Enzym Microbiol Technol 45:80–87. https://doi.org/10.1016/j.enzmictec.2009.05.012

    CAS  Article  Google Scholar 

  13. Immerzeel P, Falck P, Galbe M, Adlercreutz P, Karlsson EN, Stålbrand H (2014) Extraction of water-soluble xylan from wheat bran and utilization of enzymatically produced xylooligosaccharides by Lactobacillus, Bifidobacterium and Weissella spp. LWT Food Sci Technol 56:321–327. https://doi.org/10.1016/j.lwt.2013.12.013

    CAS  Article  Google Scholar 

  14. Kaushik P, Mishra A, Malik A (2014) Dual application of agricultural residues for xylanase production and dye removal through solid state fermentation. Int Biodeterior Biodegrad 96:1–8. https://doi.org/10.1016/j.ibiod.2014.08.006

    CAS  Article  Google Scholar 

  15. Kulkarni N, Shendye A, Rao M (1999) Molecular and biotechnological aspects of xylanases. FEMS Microbiol Rev 23:411–456. https://doi.org/10.1111/j.1574-6976.1999.tb00407.x

    CAS  Article  PubMed  Google Scholar 

  16. Leathers TD (1986) Color variants of Aureobasidium pullulans overproduce xylanase with extremely high specific activity. Appl Environ Microbiol 52:1026–1030

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Leite RSR, Bocchini DA, Martins EDS, Silva D, Gomes E, Da Silva R (2007) Production of cellulolytic and hemicellulolytic enzymes from Aureobasidium pulluans on solid state fermentation. Appl Biochem Biotechnol 137:281–288

    PubMed  Google Scholar 

  18. Li Z, Summanen PH, Komoriya T, Finegold SM (2015) In vitro study of the prebiotic xylooligosaccharide (XOS) on the growth of Bifidobacterium spp and Lactobacillus spp. Int J Food Sci Nutr 66:919–922

    CAS  Article  Google Scholar 

  19. Lotrakul P, Deenarn P, Prasongsuk S, Punnapayak H (2009) Isolation of Aureobasidium pullulans from bathroom surfaces and their antifungal activity against some Aspergilli. Afr J Microbiol Res 3:253–257

    CAS  Google Scholar 

  20. Lubomr K, Peter B (1998) Disaccharides permeases: constituents of xylanolytic and mannanolytic systems of Aureobasidium pullulans. Biochim Biophys Acta 1425:560–566. https://doi.org/10.1016/S0304-4165(98)00112-3

    Article  Google Scholar 

  21. Manitchotpisit P, Leathers TD, Peterson SW, Kurtzman CP, Li XL, Eveleigh DE, Lotrakul P, Prasongsuk S, Dunlap CA, Vermillion KE, Punnapayak H (2009) Multilocus phylogenetic analyses, pullulan production and xylanase activity of tropical isolates of Aureobasidium pullulans. Mycol Res 113:1107–1120. https://doi.org/10.1016/j.mycres.2009.07.008

    CAS  Article  PubMed  Google Scholar 

  22. Marques G, Rencoret J, Gutiérrez A, del Río JC (2010) Evaluation of the chemical composition of different non-woody plant fibers used for pulp and paper manufacturing. Open Agric J 4:93–101

    CAS  Article  Google Scholar 

  23. Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31:426–428. https://doi.org/10.1021/ac60147a030

    CAS  Article  Google Scholar 

  24. Moura P, Barata R, Carvalheiro F, Girio F, Loureiro-Dias MC, Esteves MP (2007) In vitro fermentation of xylo-oligosaccharides from corn cobs autohydrolysis by Bifidobacterium and Lactobacillus strains. LWT Food Sci Technol 40:963–972

    CAS  Article  Google Scholar 

  25. Nasr S, Soudi MR, Salmanian AH, Ghadam P (2013) Partial optimization of endo-1,4-beta-xylanase production by Aureobasidium pullulans using agro-industrial residues. Iran J Basic Med Sci 16:1245–1253. https://doi.org/10.22038/IJBMS.2013.1983

    Article  PubMed  PubMed Central  Google Scholar 

  26. Neutelings G (2011) Lignin variability in plant cell walls: contribution of new models. Plant Sci 181:379–386

    CAS  Article  Google Scholar 

  27. Ohta K, Moriyama S, Tanaka H, Shige T, Akimoto H (2001) Purification and characterization of an acidophilic xylanase from Aureobasidium pullulans var. melanigenum and sequence analysis of the encoding gene. J Biosci Bioeng 92:262–270. https://doi.org/10.1016/S1389-1723(01)80260-7

    CAS  Article  PubMed  Google Scholar 

  28. Peng F, Ren JL, Xu F, Bian J, Peng P, Sun RC (2009) Comparative study of hemicelluloses obtained by graded ethanol precipitation from sugarcane bagasse. J Agric Food Chem 57: 6305–6317. https://doi.org/10.1021/jf900986b

    CAS  Article  PubMed  Google Scholar 

  29. Prasongsuk S, Sullivan R, Kuhirun M, Eveleigh DE, Punnapayak H (2005) Thailand habitats as sources of pullulan-producing strains of Aureobasidium pullulans. World J Microbiol Biotechnol 21:393–398. https://doi.org/10.1007/s11274-004-2237-x

    CAS  Article  Google Scholar 

  30. Prasongsuk S, Lotrakul P, Ali I, Bankeeree W, Punnapayak H (2018) The current status of Aureobasidium pullulans in biotechnology. Folia Microbiol 63:129–140. https://doi.org/10.1007/s12223-017-0561-4

    CAS  Article  Google Scholar 

  31. Punnapayak H, Sudhadham M, Prasongsuk S, Pichayangkura S (2003) Characterization of Aureobasidium pullulans isolated from airborne spores in Thailand. J Ind Microbiol Biotechnol 30:89–94. https://doi.org/10.1007/s10295-002-0016-y

    CAS  Article  PubMed  Google Scholar 

  32. Samanta AK, Jayapal N, Kolte AP, Senani S, Sridhar M, Suresh KP, Sampath KT (2012) Enzymatic production of xylooligosaccharides from alkali solubilized xylan of natural grass (Sehima nervosum). Bioresour Technol 112:199–205. https://doi.org/10.1016/j.biortech.2012.02.036

    CAS  Article  PubMed  Google Scholar 

  33. Schädel C, Blöchl A, Richter A, Hoch G (2010a) Quantification and monosaccharide composition of hemicelluloses from different plant functional types. Plant Physiol Biochem 48:1–8. https://doi.org/10.1016/j.plaphy.2009.09.008

    CAS  Article  PubMed  Google Scholar 

  34. Schädel C, Blöchl A, Richter A, Hoch G (2010b) Hemicellulose concentration and composition in plant cell walls under extreme carbon source-sink imbalances. Physiol Plant 139:241–255. https://doi.org/10.1111/j.1399-3054.2010.01360.x

    CAS  Article  PubMed  Google Scholar 

  35. Singh RD, Banerjee J, Arora A (2015) Prebiotic potential of oligosaccharides: a focus on xylan derived oligosaccharides. Bioact Carbohydr Diet Fibre 5:19–30

    Article  Google Scholar 

  36. Tanaka H, Muguruma M, Ohta K (2005) Purification and properties of a family-10 xylanase from Aureobasidium pullulans ATCC 20524 and characterization of the encoding gene. Appl Microbiol Biotechnol 70:202–211

    Article  Google Scholar 

  37. Vazquez MJ, Alonso JL, Dominguez H, Parajo JC (2000) Xylooligosaccharides manufacture and applications. Trends Food Sci Technol 11:387–393. https://doi.org/10.1016/S0924-2244(01)00031-0

    CAS  Article  Google Scholar 

  38. Verjans P, Dornez E, Delcour JA, Courtin CM (2010) Selectivity for water unextractable arabinoxylan and inhibition sensitivity govern the strong bread improving potential of an acidophilic GH11 Aureobasidium pullulans xylanase. Food Chem 123:331–337. https://doi.org/10.1016/j.foodchem.2010.04.039

    CAS  Article  Google Scholar 

  39. Xia A, Cheng J, Song W, Yu C, Zhou J, Cen K (2013) Enhancing enzymatic saccharification of water hyacinth through microwave heating with dilute acid pretreatment for biomass energy utilization. Energy 61:158–166. https://doi.org/10.1016/j.energy.2013.09.019

    CAS  Article  Google Scholar 

  40. Yang CH, Yang SF, Liu WH (2007) Production of xylooligosaccharides from xylans by extracellular xylanases from Thermobifida fusca. J Agric Food Chem 55:3955–3959

    CAS  Article  Google Scholar 

  41. Yanwisetpakdee B, Lotrakul P, Prasongsuk S, Seelanan T, White JF, Eveleigh DE, Kim SW, Punnapayak H (2016) Associations among halotolerance, osmotolerance and exopolysaccharide production of Aureobasidium melanogenum strains from habitats under salt stress. Pak J Bot 48:1229–1239

    CAS  Google Scholar 

  42. Yegin S (2017) Single-step purification and characterization of an extreme halophilic, ethanol tolerant and acidophilic xylanase from Aureobasidium pullulans NRRL Y-2311-1 with application potential in the food industry. Food Chem 221:67–75

    CAS  Article  Google Scholar 

  43. Yu X, Gu Z (2013) Optimization of nutrition constituents for feruloyl oligosaccharides production by a new isolate of Aureobasium pullulans 2012 under fermentation on wheat bran. Bioresources 8:6434–6447

    Google Scholar 

Download references

Funding

This study was financially supported by the Development and Promotion of Science and Technology talents project (DPST), and the Asia Research Center, Chulalongkorn University.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Pongtharin Lotrakul or Sehanat Prasongsuk.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 109 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Patipong, T., Lotrakul, P., Padungros, P. et al. Enzymatic hydrolysis of tropical weed xylans using xylanase from Aureobasidium melanogenum PBUAP46 for xylooligosaccharide production. 3 Biotech 9, 56 (2019). https://doi.org/10.1007/s13205-019-1586-y

Download citation

Keywords

  • Tropical weed
  • Xylan
  • Xylanase
  • Xylooligosaccharide
  • Prebiotic