Skip to main content
Log in

Optimization of cultural conditions for lipid accumulation by Aspergillus wentii Ras101 and its transesterification to biodiesel: application of response surface methodology

  • Original Article
  • Published:
3 Biotech Aims and scope Submit manuscript

Abstract

The present study is aimed to maximize biodiesel production by using the fungal strain Aspergillus wentii Ras101 as a feedstock. Response surface methodology was used to relate the interaction between some nutritional and environmental factors affecting the lipid productivity by A. wentii Ras101. By applying LINGO optimization program, the maximum lipid production of 40% dry biomass of this fungal isolate has been attained in a fermentation medium composed of 50 g/l glucose, 1 g/l nitrates, 1.5 g/l phosphorous, and 0.5 g/l NaCl. This medium was adjusted at pH of 6, and incubated at 28 °C for 7 days. The values of correlation errors between the experimental and estimated values are less than 1%; this proves that the proposed correlation could be used effectively for estimating the fungal lipid production. Consequently, the effects of time and temperature on the amount of biodiesel produced in the extraction and transesterification one-step process have been investigated. The maximum biodiesel production of 28% dry biomass (80% lipid) has been achieved in the transesterification process at 70 °C for 30 min. Additionally, it is found that the combination of glucose, nitrogen and phosphorous contents has a positive influence on lipid production in the fungal biomass. The density, kinematic viscosity, water content and calorific value of the produced biodiesel were 800 kg/m3, 2.8 mm2/s, 66 ppm and 10122 kcal/kg, respectively that matched well with biodiesel and fossil standard specifications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Al-Hawash AB, Li S, Zhang X, Zhang X, Ma F (2018) Productivity of γ-linoleic acid by oleaginous fungus Cunninghamella echinulata using a pulsed high magnetic field. Food Biosci 21:1–7

    Article  CAS  Google Scholar 

  • Ali TH, El-Gamal MS, El-Ghonemy DH, Awad GE, Tantawy AE (2017) Improvement of lipid production from an oil-producing filamentous fungus, Penicillium brevicompactum NRC 829, through central composite statistical design. Ann Microbiol 67(9):601–613

    Article  CAS  Google Scholar 

  • Amanullah A, McFarlane CM, Emery AN, Nienow AW (2001) Scale-down model to simulate spatial pH variations in large-scale bioreactors. Biotechnol Bioeng 73(5):390–399

    Article  CAS  PubMed  Google Scholar 

  • Antolin G, Tinaut FV, Briceno Y, Castano V, Perez C, Ramirez AI (2002) Optimisation of biodiesel production by sunflower oil transesterification. Bioresour Technol 83(2):111–114

    Article  CAS  PubMed  Google Scholar 

  • Athenaki M, Gardeli C, Diamantopoulou P, Tchakouteu SS, Sarris D, Philippoussis A, Papanikolaou S (2018) Lipids from yeasts and fungi: physiology, production and analytical considerations. J Appl Microbiol 124(2):336–367

    Article  CAS  PubMed  Google Scholar 

  • Azócar L, Hermann JH, Rodrigo N (2010) Biotechnological processes for biodiesel production using alternative oils. Appl Mcrobiol Biotechnol 88(3):621–636

    Article  Google Scholar 

  • Borowitzka MA (1997) Microalgae for aquaculture: opportunities and constraints. J Appl Phycol 9(5):393–401

    Article  Google Scholar 

  • Carvalho AKF, Bento HB, Izário Filho HJ, de Castro HF (2018) Approaches to convert Mucor circinelloides lipid into biodiesel by enzymatic synthesis assisted by microwave irradiations. Renew Energy 125:747–754

    Article  CAS  Google Scholar 

  • Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25(3):294–306

    Article  CAS  PubMed  Google Scholar 

  • Chisti Y (2008) Biodiesel from microalgae beats bioethanol. Trends Biotechnol 26(3):126–131

    Article  CAS  PubMed  Google Scholar 

  • Dean AP, David CS, Beatriz E, Jon KP (2010) Using FTIR spectroscopy for rapid determination of lipid accumulation in response to nitrogen limitation in freshwater microalgae. Bioresour Technol 101(12):4499–4507

    Article  CAS  PubMed  Google Scholar 

  • Demirbaş A (2003) Biodiesel fuels from vegetable oils via catalytic and non-catalytic supercritical alcohol transesterifications and other methods: a survey. Energy Conv Manag 44(13):2093–2109

    Article  Google Scholar 

  • Demirbas MF (2009) Biorefineries for biofuel upgrading: a critical review. Appl Energy 86:5151–5161

    Article  Google Scholar 

  • Felizardo P, Correia MJN, Raposo I, Mendes JF, Berkemeier R, Bordado JM (2006) Production of biodiesel from waste frying oils. Waste Manag 26(5):487–494

    Article  CAS  PubMed  Google Scholar 

  • Fjerbaek L, Knud VC, Birgir N (2009) A review of the current state of biodiesel production using enzymatic transesterification. Biotechnol Bioeng 102(5):1298–1315

    Article  CAS  PubMed  Google Scholar 

  • Ghadge SV, Hifjur R (2005) Biodiesel production from mahua (Madhuca indica) oil having high free fatty acids. Biomass Bioenerg 28(6):601–605

    Article  CAS  Google Scholar 

  • Giakoumis EG (2018) Analysis of 22 vegetable oils’ physico-chemical properties and fatty acid composition on a statistical basis, and correlation with the degree of unsaturation. Renew Energy 126:403–419

    Article  CAS  Google Scholar 

  • González-Delgado ÁD, Kafarov V (2011) Microalgae based biorefinery: issues to consider, CT&F-Ciencia. Tecnol Futuro 4(4):5–22

    Google Scholar 

  • González-Delgado ÁD, Viatcheslav K (2013) Microalgae based biorefinery: evaluation of oil extraction methods in terms of efficiency, costs, toxicity and energy in lab-scale. Rev ION 26(1):27–39

    Google Scholar 

  • Gui M, Lee K, Bhatia S (2008) Feasibility of edible oil vs. non-edible oil vs. waste edible oil as biodiesel feedstock. Energy 33(11):1646–1653

    Article  CAS  Google Scholar 

  • Gustone F (2009) Lipids as source of food and fuel—will there be enough. In: 2nd international congress on biodiesel: the science and the technologies, Munich, Germany, pp 15–17

  • Haas M (2005) Improving the economics of biodiesel production through the use of low value lipids as feedstocks: vegetable oil soapstock. Fuel Process Technol 86(10):1087–1096

    Article  CAS  Google Scholar 

  • Hassan M, Philippe JB, Louis-Marie G, Alain P, Gérard G (1996) Influence of nitrogen and iron limitations on lipid production by Cryptococcus curvatus grown in batch and fed-batch culture. Process Biochem 31(4):355–361

    Article  CAS  Google Scholar 

  • Hirsch RL, Bezdek R, Wendling R (2005) Peaking of world oil production: impacts, mitigation and risk management. National Energy Technology Laboratory, Department of Energy, US

    Google Scholar 

  • Huang GH, Feng C, Dong W, Xue WZ, Gu C (2010) Biodiesel production by microalgal biotechnology. Appl Energy 87(1):38–46

    Article  CAS  Google Scholar 

  • Kong Q, Ling L, Blanca M, Paul C, Roger R (2010) Culture of microalgae Chlamydomonas reinhardtii in wastewater for biomass feedstock production. Appl Biochem Biotechnol 160(1):9–18

    Article  CAS  PubMed  Google Scholar 

  • Kulkarni MG, Ajay KD (2006) Waste cooking oil an economical source for biodiesel: a review. Ind Eng Chem Res 45(9):2901–2913

    Article  CAS  Google Scholar 

  • Leung DYC, Xuan W, Leung MKH (2010) A review on biodiesel production using catalyzed transesterification. Appl Energy 87(4):1083–1095

    Article  CAS  Google Scholar 

  • Li Q, Wang MY (1997) Use food industry waste to produce microbial oil. Sci Technol Food Ind 6:65–69

    Google Scholar 

  • Li Y, Mark H, Bei W, Nan W, Christopher QL (2008) Effects of nitrogen sources on cell growth and lipid accumulation of green alga Neochloris oleoabundans. Appl Microbiol Biotechnol 81(4):629–636

    Article  CAS  PubMed  Google Scholar 

  • Liao JC, Luo M, Sammy P, Shanshan L (2016) Fuelling the future: microbial engineering for the production of sustainable biofuels. Nature Rev Microbiol 14(5):288–304

    Article  CAS  Google Scholar 

  • Lilly VG, Horace LB (1951) Physiology of the fungi. Physiology of the fungi. McGraw Hill Book Company Inc., New York, p 464

    Google Scholar 

  • Liu G, Qin-Lu L, Xian-Chun J, Xiao-Ling W, Yan Z (2010) Screening and fermentation optimization of microbial lipid-producing molds from forest soils. Afr J Microbiol Res 4(14):1462–1468

    CAS  Google Scholar 

  • Lu X, Harmit V, Chaitan K (2008) Overproduction of free fatty acids in E. coli: implications for biodiesel production. Metab Eng 10(6):333–339

    Article  CAS  PubMed  Google Scholar 

  • Ma F, Milford AH (1999) Biodiesel production: a review. Bioresour Technol 70(1):1–15

    Article  CAS  Google Scholar 

  • Mapiour M, Sundaramurthy V, Dalai AK, Adjaye J (2010) Effects of the operating variables on hydrotreating of heavy gas oil: experimental, modeling, and kinetic studies. Fuel 89(9):2536–2543

    Article  CAS  Google Scholar 

  • Matsakas L, Giannakou M, Vörös D (2017) Effect of synthetic and natural media on lipid production from Fusarium oxysporum. Elect J Biotechnol 30:95–102

    Article  CAS  Google Scholar 

  • Meng X, Yang J, Xu X, Zhang L, Nie Q, Xian M (2009) Biodiesel production from oleaginous microorganisms. Renew Energy 34(1):1–5

    Article  Google Scholar 

  • Minhas AK, Hodgson P, Barrow CJ, Adholeya A (2016) A review on the assessment of stress conditions for simultaneous production of microalgal lipids and carotenoids. Front Microbiol 7(546):1–19

    Google Scholar 

  • Mishra SK, William IS, Wasif F, Myounghoon M, Anupama S, Min SP, Ji-Won Y (2014) Rapid quantification of microalgal lipids in aqueous medium by a simple colorimetric method. Bioresour Technol 155:330–333

    Article  CAS  PubMed  Google Scholar 

  • Neter J, Michael HK, Christopher JN, William W (1996) Applied linear statistical models, vol 4. Irwin, Chicago

    Google Scholar 

  • Parawira W (2009) Biotechnological production of biodiesel fuel using biocatalysed transesterification: a review. Crit Rev Biotechnol 29(2):82–93

    Article  CAS  PubMed  Google Scholar 

  • Pérez-Lombard L, Ortiz J, Pout C (2008) A review on buildings energy consumption information. Energy Build 40(3):394–398

    Article  Google Scholar 

  • Rahimnejad M, Ghoreyshi A, Najafpour G, Younesi H, Shakeri M (2012) A novel microbial fuel cell stack for continuous production of clean energy. Int J Hydrog Energy 37(7):5992–6000

    Article  CAS  Google Scholar 

  • Ramadhas AS, Simon J, Chandrashekaran M (2005) Biodiesel production from high FFA rubber seed oil. Fuel 84(4):335–340

    Article  CAS  Google Scholar 

  • Ratledge C, James PW (2002) The biochemistry and molecular biology of lipid accumulation in oleaginous microorganisms. Adv Appl Microbiol 51:1–52

    Article  CAS  PubMed  Google Scholar 

  • Reis EM, Coelho RS, Grimaldi R, Anschau A, Lacerda LM, Chaar J, Franco TT (2014) In situ transesterification from oleaginous yeast biomass, In Ibic2014: 4th international conference on industrial biotechnology. Chem Eng Trans 38:319–324

    Google Scholar 

  • Rutz D, Janssen R (2007) Biofuel technology handbook. WIP Renew Energies, München, Germany, p 95

    Google Scholar 

  • Sen A, Muni S (2012) Regression analysis: theory, methods, and applications. Springer, New York

    Google Scholar 

  • Sharp CA (1996) Emissions and lubricity evaluation of rapeseed derived biodiesel fuels. Final report for Montana Department of Environmental Quality. Southwest Research Institute

  • Shoaib AM, Bhran AA (2013) A new hierarchical approach for maximizing biodiesel mixing ratio based on the final product specifications. Pet Coal 55(4):351–360

    Google Scholar 

  • Subhash GV, Mohan SV (2014) Lipid accumulation for biodiesel production by oleaginous fungus Aspergillus awamori: influence of critical factors. Fuel 116:509–515

    Article  Google Scholar 

  • Subramaniam R, Stephen D, Mark Z, Rakesh B (2010) Microbial lipids from renewable resources: production and characterization. J Ind Microbiol Biotechnol 37(12):1271–1287

    Article  CAS  PubMed  Google Scholar 

  • Uddin MR, Ferdous K, Uddin MR, Khan MR, Islam MA (2013) Synthesis of biodiesel from waste cooking oil. Chem Eng Sci 1(2):22–26

    Article  Google Scholar 

  • Vicente G, Mercedes M, Jose A (2004) Integrated biodiesel production: a comparison of different homogeneous catalysts systems. Bioresour Technol 92(3):297–305

    Article  CAS  PubMed  Google Scholar 

  • Weisberg S (1998) Applied linear regression, 2nd edn. Wiley, Oxford

    Google Scholar 

  • Wu G, Bryant MM, Voitle RA, Roland DA (2005) Performance comparison and nutritional requirements of five commercial layer strains in phase IV. Int J Poult Sci 4:182–186

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdel-Hamied Rasmey.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to declare.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shoaib, A., Bhran, A., Rasmey, AH. et al. Optimization of cultural conditions for lipid accumulation by Aspergillus wentii Ras101 and its transesterification to biodiesel: application of response surface methodology. 3 Biotech 8, 417 (2018). https://doi.org/10.1007/s13205-018-1434-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13205-018-1434-5

Keywords

Navigation