3 Biotech

, 8:209 | Cite as

Biochemical events during somatic embryogenesis in Coffea arabica L.

  • Patrícia Monah Cunha Bartos
  • Hugo Teixeira Gomes
  • Lourdes Isabel Velho do Amaral
  • João Batista Teixeira
  • Jonny Everson Scherwinski-Pereira
Original Article


Several biochemical components associated with different stages of somatic embryogenesis in coffee (Coffea arabica L.) are investigated using foliar explants. Soluble sugar, starch, free amino acids and total proteins were extracted and quantified at different stages of somatic embryogenesis, such as foliar segments (initial explants), primary calluses, embryogenic calluses, globular embryos, torpedoes, cotyledonary embryos and mature fruit zygotic embryos. Total soluble sugar levels increased sixfold at the initial stages of somatic embryogenesis induction. During this period, total soluble sugar in the cultures contained approximately 99.3% glucose and fructose. At 67.4 μg/mg MS, no significant changes were observed in total sugar content during the embryo’s somatic maturation and regeneration. During this stage, total soluble sugar was composed of 60% sucrose. After primary callus formation, starch contents increased gradually until the culture’s conclusion. Total free amino acids, particularly arginine, lysine, methionine, asparagine, glutamine and histidine, revealed a higher synthesis until the formation of the primary callus, after which they remain statistically constant up to the end of the process. During the induction of calluses, a gradual increase of total proteins occurred, which, in the differentiating and maturing of somatic embryos, did not differ statistically till the formation of a cotyledonary embryo, when rates decreased 21.8%.


Rubiaceae Morphogenesis Somatic embryos Liquid medium Large-scale propagation Biochemical profiling 



The authors are very grateful to CAPES and CNPq for financial support and fellowships.

Compliance with ethical standards

Conflict of interest

The authors declare no competing interests.


  1. Ahmed W, Feyissa T, Disasa T (2013) Somatic embryogenesis of a coffee (Coffea arabica L.) hybrid using leaf explants. J HortSciBiot 88:469–475Google Scholar
  2. Amaral LIV, Costa PMF, Aidar MPM, Gaspar M, Buckeridge MS (2007) Novo método enzimático rápido e sensível de extração e dosagem de amido em materiais vegetais. Hoehnea 34:425–431CrossRefGoogle Scholar
  3. Bagni N, Tassoni A (2001) Biosynthesis, oxidation and conjugation of aliphatic polyamines in higher plants. Amino Acids 20:301–317CrossRefGoogle Scholar
  4. Bartos PMC (2012) Embriogênese somática do cafeeiro (Coffea arabica L.) e caracterização bioquímica e anatômica das diferentes etapas envolvidas no processo. Dissertation, University of BrasíliaGoogle Scholar
  5. Baud S, Boutin JP, Miquel M, Lepiniec L, Rochat C (2002) An integrated overview of seed development in Arabidopsis thaliana ecotype WS. Plant PhysiolBioch 40:151–160Google Scholar
  6. Booz MR, Kerbauy YGB, Guerra MP, Pescador R (2009) The role of c-aminobutyric acid (Gaba) in somatic embryogenesis of Acca sellowiana Berg. (Myrtaceae). Braz J Plant Physiol 21:271–280CrossRefGoogle Scholar
  7. Bradford MM (1956) A rapid sensitive method for quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 72:248–254CrossRefGoogle Scholar
  8. Campos NA, Panis B, Carpentier SC (2017) Somatic embryogenesis in coffee: the evolution of biotechnology and the integration of Omics technologies offer great opportunities. Front Plant Sci 8:1460CrossRefGoogle Scholar
  9. Cangahuala-Inocente GC, Steiner N, Maldonado SB, Guerra MP (2009) Patterns of protein and carbohydrate accumulation during somatic embryogenesis of Acca sellowiana. Pesq Agropec Bras 44:217–224CrossRefGoogle Scholar
  10. Cangahuala-Inocente GC, Silveira V, Caprestano CA, Floh EI, Guerra MP (2013) Dynamics of physiological and biochemical changes during somatic embryogenesis of Acca sellowiana. In Vitro Cell Dev Plant 50:166–175CrossRefGoogle Scholar
  11. Dal Vescol L, Guerra MP (2001) The effectiveness of nitrogen sources in Feijoasomatic embryogenesis. Plant Cell Tissue Organ Cult 64:19–25CrossRefGoogle Scholar
  12. De Bruijn JM, Bout M (2000) HPAEC analysis of amino acids in sugar beet samples: method development and application. Zuckerindustrie 125:604–609Google Scholar
  13. Delrot S, Atanassova R, Maurousset L (2000) Regulation of sugar, amino acid and peptide plant membrane transporter. Biochim Biophys Acta 1465:281–306CrossRefGoogle Scholar
  14. Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for the determination of sugars and related substances. Anal Chem 28:350–356CrossRefGoogle Scholar
  15. Feher A, Pasternark TP, Dudits D (2003) Transition of somatic plant cells to an embryogenic state. Plant Cell Tissue Organ Cult 74:201–228CrossRefGoogle Scholar
  16. Ferreira DF (2011) Sisvar: a computer statistical analysis system. Ciênc Agrotec 35:1039–1042CrossRefGoogle Scholar
  17. Fuentes-Cerda CFJ, Monforte-González M, Méndez-Zeel M, Rojas-Herrera R, Loyola-Vargas VM (2001) Modification of the embryogenic response of Coffea arabica by the nitrogen source. Biotech 23:1341–1343Google Scholar
  18. Fujii JAA, Slade D, Olsen R, Ruzin SE, Redenbaugh K (1990) Alfalfa somatic embryo maturation and conversion to plants. Plant Sci 72:93–100CrossRefGoogle Scholar
  19. Gomes HT, Bartos PMC, Silva CO, Amaral LIV, Scherwinski-Pereira JE (2014) Comparative biochemical profiling during the stages of acquisition and development of somatic embryogenesis in African oil palm (Elaeis guineensis Jacq.). Plant Growth Regul 74:199–208CrossRefGoogle Scholar
  20. Hara S, Falk H, Kleinig H (1985) Starch and triacylglycerol metabolism related to somatic embryogenesis in Papaver orientale tissue cultures. Planta 164:303–307CrossRefGoogle Scholar
  21. Ibrahim MSD, Hartati RS, Rubiyo R, Purwito A, Sudarsono S (2013) Direct and indirect somatic embryogenesis on arabica coffee (Coffea arabica). Indon J Agric Sci 14:79–86CrossRefGoogle Scholar
  22. Iraqui D, Tremblay FM (2001) Analysis of carbohydrate metabolism enzymes and cellular contents of sugars and proteins during spruce somatic embryogenesis suggests a regulatory role of exogenous sucrose in embryo development. J Exp Bot 52:301–2311CrossRefGoogle Scholar
  23. Jariteh M, Ebrahimzadeh H, Niknam V, Mirmasoumi M, Vahdati K (2015) Developmental changes of protein, proline and some antioxidant enzymes activities in somatic and zygotic embryos of Persian walnut (Juglans regia L.). Plant Cell Tissue Organ Cult 122:101–115CrossRefGoogle Scholar
  24. Kamada H, Harada H (1979) Studies on the organogenesis in carrot tissue cultures. I. Effects of growth regulators on somatic embryogenesis and root formation. Z Pflanzenphysiol 91:453–463CrossRefGoogle Scholar
  25. Kumar SP, Kumari BDR (2011) Factors affecting on somatic embryogenesis of safflower (Carthamus tinctorius L.) at morphological and biochemical levels. World J Agric Sci 7:197–205Google Scholar
  26. Lai FM, Mckersei BD (1994) Regulation of starch and protein accumulation in alfalfa (Medicago sativa L.) somatic embryos. Plant Sci 100:211–219CrossRefGoogle Scholar
  27. Lubabali AH, Alakonya AE, Gichuru EK, Kahia JW, Mayoli RN (2014) In vitro propagation of the new disease resistant Coffea arabica variety, Batian. Afr J Biotech 13:2414–2419CrossRefGoogle Scholar
  28. Martin AB, Cuadrado Y, Guerra H, Gallego P, Hita O, Martin L, Dorado A, Villalobos N (2000) Differences in the contents of total sugars, starch and sucrose in embryogenic and nonembryogenic calli from Medicagoarborea L. Plant Sci 154:143–151CrossRefGoogle Scholar
  29. Mengarda LHG, Pescador R, Chu EP, Figueiredo-Ribeiro RCL (2009) Efeito do frio sobre os carboidratos solúveis em culturas embriogênicas de Acca sellowiana O. Berg (Myrtaceae). Rev Bras Bot 32:307–317CrossRefGoogle Scholar
  30. Miflin BJ, Lea PJ (1976) The pathway of nitrogen assimilation in plants. Phytochemistry 15:873–885CrossRefGoogle Scholar
  31. Moura EF, Ventrella MC, Motoike SY (2010) Anatomy, histochemistry and ultrastructure of seed and somatic embryo of Acrocomia aculeata (Arecaceae). Sci Agric 67:399–407CrossRefGoogle Scholar
  32. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497CrossRefGoogle Scholar
  33. Murch SJ, Victor JMR, Krishnaraj S, Saxena PK (1999) The role of proline in thidiazuron-induced somatic embryogenesis of peanut. In Vitro Cell Dev Plant 35:102–105CrossRefGoogle Scholar
  34. Nakamura T, Taniguchi T, Maeda E (1994) Cyto-histological studies on somatic embryos of Coffee: ultrastructural Aspects. Jpn J Crop Sci 63:144–157CrossRefGoogle Scholar
  35. Neuberg M, Pavlíková D, Pavlík M, Balík J (2010) The effect of different nitrogen nutrition on proline and asparagine content in plant. Plant Soil Environ 56:305–311CrossRefGoogle Scholar
  36. Neuenschwander B, Baumann TW (1992) A novel type of somatic embryogenesis in Coffea arabica. Plant Cell Rep 10:608–612CrossRefGoogle Scholar
  37. Pescador R, Kerbauy GB, Kraus JE, Ferreira WM, Guerra MP, Figueiredo-Ribeiro RC (2008) Changes in soluble carbohydrates and starch amounts during somatic and zygotic embryogenesis of Acca sellowiana (Myrtaceae). In Vitro Cell Dev Plant 44:289–299CrossRefGoogle Scholar
  38. Portillo L, Santacruz-Ruvalcaba F, Gutiérrez-Mora A, Rodríguez-Garay B (2007) Somatic embryogenesis in Agave tequilana Weber cultivar azul. In Vitro Cell Dev Plant 43:569–575CrossRefGoogle Scholar
  39. Rezende JCD, Carvalho CHSD, Santos ACR, Pasqual M, Teixeira JB (2012) Multiplication of embryogenic calli in Coffea arabica L. Acta Sci Agron 34:93–98CrossRefGoogle Scholar
  40. Roowi SH, Ho CL, Alwee SSRS, Abdullah MO, Napis S (2010) Isolation and characterization of differentially expressed transcripts from the suspension cells of oil palm (Elaeis guineensis Jacq.) in response to different concentration of auxins. Mol Biotechnol 46:1–19CrossRefGoogle Scholar
  41. Sánchez-romero C, Perán-quesada R, Barceló-munoz A, Pliego-alfaro F (2002) Variations in storage protein and carbohydrate levels during development of avocado zygotic embryos. Plant Physiol Biochem 40:1043–1049CrossRefGoogle Scholar
  42. Santos CG, Paiva R, Paiva PDO, Paiva E (2003) Indução e análise bioquímica de calos obtidos de segmentos foliares Coffea arabica L., cultivar rubi. Ciênc Agrotec 27:571–577CrossRefGoogle Scholar
  43. Santos CG, Paiva R, Paiva PDO, Paiva E (2008) Indução e análise bioquímica de calos obtidos de segmentos foliares Coffea canephora L., cv. APOATÃ. Magistra 20:22–29Google Scholar
  44. Sauter JJ, Van Cleve B (1991) Biochemical and ultrastructural results during starch–sugar-conversion in ray parenchyma cells of Populus during cold adaptation. J Plant Physiol 139:19–26CrossRefGoogle Scholar
  45. Silva RC, Carmo LSC, Luis ZGL, Silva LP, Scherwinski-Pereira JE, Mehta A (2014) Proteomic identification of differentially expressed proteins during the acquisition of somatic embryogenesis in oil palm (Elaeis guineensis Jacq.). J Proteomics 104:112–127CrossRefGoogle Scholar
  46. Silveira V, Santa-Catarina C, Tun NN, Scherer GFE, Handro W, Guerra MP, Floh EIS (2006) Polyamine effects on the endogenous polyamine contents, nitric oxide release, growth and differentiation of embryogenic suspension cultures of Araucaria angustifolia (Bert.) O. Ktze. Plant Sci 171:91–98CrossRefGoogle Scholar
  47. Sodek J, Zhu B, Huynh MH, Brown TJ, Ringuette M (2002) Novel functions of the matricellular proteins osteopontin and osteonectin. Connect Tissue Res 43:308–319CrossRefGoogle Scholar
  48. Söndahl MR, Sharp WR (1976) High frequency induction of somatic embryos in cultured leaf expiants of Coffea arabica L. Zeitschriftfür Pflanzenphysiol 81:395–408CrossRefGoogle Scholar
  49. Szabados L, Savouré A (2009) Proline: a multifunctional amino acid. Trends Plant Sci 15:89–97CrossRefGoogle Scholar
  50. van Boxtel J, Berthouly M (1996) High frequency somatic embryogenesis from coffee leaves. Plant Cell Tissue Organ Cult 44:7–17CrossRefGoogle Scholar
  51. van der Vossen H, Bertrand B, Charrier A (2015) Next generation variety development for sustainable production of arabica coffee (Coffea arabica L.): a review. Euphytica 2:243–256CrossRefGoogle Scholar
  52. Verbruggen N, Hermans C (2008) Proline accumulation in plants: a review. Amino Acids 35:753–759CrossRefGoogle Scholar
  53. Warchoł M, Skrzypek E, Kusibab T, Dubert F (2015) Induction of somatic embryogenesis and biochemical characterization of Cordyline australis (G. Forst.) Endl. ‘Red Star’callus. Sci Hortic 192:338–345CrossRefGoogle Scholar
  54. Weber H, Borisjuk L, Wobus U (1997) Sugar important and metabolism during seed development. Trend Plant Sci 2:169–174CrossRefGoogle Scholar
  55. Wise JM, Tunnacliffe A (2004) POPP the quest: what do LEA proteins do? Trends Plant Sci 9:13–17CrossRefGoogle Scholar
  56. Yasuda T, Fujii Y, Yamaguchi T (1985) Embryogenic callus induction from Coffea arabica leaf explants by benzyladenine. Plant Cell Physiol 26:595–597CrossRefGoogle Scholar
  57. Yemm EW, Cocking EC (1955) The determination of amino acids with ninhydrin. Analyst 80:209–213CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of BotanyUniversity of BrasíliaBrasíliaBrazil
  2. 2.Embrapa Genetic Resources and BiotechnologyBrasíliaBrazil

Personalised recommendations