Skip to main content
Log in

Therapeutic applications of bacterial pigments: a review of current status and future opportunities

  • Review Article
  • Published:
3 Biotech Aims and scope Submit manuscript

Abstract

Non-toxicity, biodegradability and non-carcinogenicity of the natural pigments, dyes and colorants make them an attractive source for human use. Bacterial pigments are colored metabolites secreted by bacteria under stress. The industrial uses of bacterial pigments have increased many folds because of several advantages over the synthetic pigments. Among natural resources, bacterial pigments are mostly preferred because of simple culturing and pigment extraction techniques, scaling up and being time economical. Generally, the bacterial pigments are safe for human use and therefore have a wide range of applications in pharmaceutical, textile, cosmetics and food industries. Therapeutic nature of the bacterial pigments is revealed because of their antimicrobial, anticancer, cytotoxic and remarkable antioxidant properties. Owing to the importance of bacterial pigments it was considered important to produce a comprehensive review of literature on the therapeutic and industrial potential of bacterial pigments. Extensive literature has been reviewed on the biomedical application of bacterial pigments while further opportunities and future challenges have been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aberoumand A (2011) A review article on edible pigments properties and sources as natural biocolorants in foodstuff and food industry. World J Dairy Food Sci 6(1):71–78

    Google Scholar 

  • Ahmad WA, Ahmad WYW, Zakaria ZA, Yusof NZ (2012) Application of bacterial pigments as colorant. In: Application of bacterial pigments as colorant. Springer, pp 57–74

  • Alihosseini F, Ju KS, Lango J, Hammock BD, Sun G (2008) Antibacterial colorants: characterization of prodiginines and their applications on textile materials. Biotechnol Prog 24(3):742–747

    Article  CAS  Google Scholar 

  • Andrighetti-Fröhner CR, Antonio RV, Creczynski-Pasa TB, Barardi CRM, Simões CMO (2003) Cytotoxicity and potential antiviral evaluation of violacein produced by Chromobacterium violaceum. Memórias do Instituto Oswaldo Cruz 98(6):843–848

    Article  Google Scholar 

  • Arun N, Singh D (2013) Differential response of Dunaliella salina and Dunaliella tertiolecta isolated from brines of Sambhar Salt Lake of Rajasthan (India) to salinities: a study on growth, pigment and glycerol synthesis. J Mar Biol Assoc India 55(1):65–70

    Article  Google Scholar 

  • August P, Grossman T, Minor C, Draper M, MacNeil I, Pemberton J, Call K, Holt D, Osburne M (2000) Sequence analysis and functional characterization of the violacein biosynthetic pathway from Chromobacterium violaceum. J Mol Microbiol Biotechnol 2(4):513–519

    CAS  Google Scholar 

  • Asker D, Ohta Y (2002) Production of canthaxanthin by Haloferax alexandrinus under non-aseptic conditions and a simple, rapid method for its extraction. Appl Microbiol Biotechnol 58(6):743–750

    Article  CAS  Google Scholar 

  • Banerjee D, Chatterjee S, Banerjee U, Guha AK, Ray L (2011) Green Pigment from Bacillus cereus M116 (MTCC 5521): production parameters and antibacterial activity. Appl Biochem Biotechnol 164(6):767–779

    Article  CAS  Google Scholar 

  • Bohlke K, Spiegelman D, Trichopoulou A, Katsouyanni K, Trichopoulos D (1999) Vitamins A, C and E and the risk of breast cancer: results from a case-control study in Greece. Br J Cancer 79(1):23

    Article  CAS  Google Scholar 

  • Boo H-O, Hwang S-J, Bae C-S, Park S-H, Song W-S (2011) Antioxidant activity according to each kind of natural plant pigments. Korean J Plant Resour 24(1):105–112

    Article  Google Scholar 

  • Campas C, Dalmau M, Montaner B, Barragan M, Bellosillo B, Colomer D, Pons G, Pérez-Tomás R, Gil J (2003) Prodigiosin induces apoptosis of B and T cells from B-cell chronic lymphocytic leukemia. Leukemia 17(4):746–750

    Article  CAS  Google Scholar 

  • Carte BK (1996) Biomedical potential of marine natural products. Bioscience 46(4):271–286

    Article  Google Scholar 

  • Carreira A, Ferreira L, Loureiro V (2001a) Production of brown tyrosine pigments by the yeast Yarrowia lipolytica. J App Microbiol 90(3):372–379

    Article  CAS  Google Scholar 

  • Carreira A, Ferreira LM, Loureiro Vl (2001b) Brown pigments produced by Yarrowia lipolytica result from extracellular accumulation of homogentisic acid. Appl Environ Microbiol 67(8):3463–3468

    Article  CAS  Google Scholar 

  • Chandi GK, Gill BS (2011) Production and characterization of microbial carotenoids as an alternative to synthetic colors: a review. Int J Food Prop 14(3):503–513

    Article  CAS  Google Scholar 

  • Chávez R, Fierro F, García-Rico RO, Laich F (2011) Mold-fermented foods: Penicillium spp. as ripening agents in the elaboration of cheese and meat products. In: Mycofactories. Bentham Science Publishers Ltd.,

  • Chen M-T, Tseng Y-Y Efficacy of antimicrobial substances from Monascus metabolites on preservation of meat. In: 35. International Congress of Meat Science and Technology, Copenhagen (Denmark), 20–25 Aug 1989, 1989. SFI

  • Choi SY, Yoon K-h, Lee JI, Mitchell RJ (2015) Violacein: properties and production of a versatile bacterial pigment. BioMed research international 2015

  • Cragg GM, Newman DJ (1999) Discovery and development of antineoplastic agents from natural sources. Cancer Invest 17(2):153–163

    Article  CAS  Google Scholar 

  • Cserháti T (2006) Liquid chromatography of natural pigments and synthetic dyes, vol 71. Elsevier,

  • De Carvalho DD, Fabio TM, Costa, Duran N, Duran M (2006) Cytotoxic activity of violacein in human colon cancer cells. Toxicol in Vitro 20(8):1514–1521

    Article  Google Scholar 

  • Davoli P, Weber RW (2002) Carotenoid pigments from the red mirror yeast. Sporobolomyces roseus. Mycologist 16(3):102–108

    Google Scholar 

  • Demain AL (1980) Microbial production of primary metabolites. Naturwissenschaften 67(12):582–587

    Article  CAS  Google Scholar 

  • Duerre JA, Buckley PJ (1965) Pigment production from tryptophan by an Achromobacter species. J Bacteriol 90(6):1686–1691

    CAS  Google Scholar 

  • Dufossé L (2006) Microbial production of food grade pigments. Food Technology and Biotechnology 44(3):313–323

    Google Scholar 

  • Duran M, Ponezi AN, Faljoni-Alario A, Teixeira MF, Justo GZ, Duran N (2012) Potential applications of violacein: a microbial pigment. Med Chem Res 21(7):1524–1532

    Article  CAS  Google Scholar 

  • S.editors B (2009) Microbial pigments. Biotechnology for agro-industrial residues, 8. Dodrdrecht. Springer

  • El-Banna AAE-R, El-Razek AMA, El-Mahdy AR (2012) Isolation, identification and screening of carotenoid-producing strains of Rhodotorula glutinis. Food Nutr Sci 3(05):627

    Article  CAS  Google Scholar 

  • Fenical W (1997) New pharmaceuticals from marine organisms. Trends Biotechnol 15(9):339–341

    Article  CAS  Google Scholar 

  • Ferreira CV, Bos CL, Versteeg HH, Justo GZ, Durán N, Peppelenbosch MP (2004) Molecular mechanism of violacein-mediated human leukemia cell death. Blood 104(5):1459–1464

    Article  CAS  Google Scholar 

  • Frandsen RJ, Nielsen NJ, Maolanon N, Sørensen JC, Olsson S, Nielsen J, Giese H (2006) The biosynthetic pathway for aurofusarin in Fusarium graminearum reveals a close link between the naphthoquinones and naphthopyrones. Mol Microbiol 61(4):1069–1080

    Article  CAS  Google Scholar 

  • Galaup P, Sutthiwong N, Leclercq-Perlat MN, Valla A, Caro Y, Fouillaud M, Guérard F, Dufossé L (2015) First isolation of Brevibacterium sp. pigments in the rind of an industrial red-smear-ripened soft cheese. Int J Dairy Technol 68(1):144–147

    Article  CAS  Google Scholar 

  • Gerber NN (1975) Prodigiosin-like pigments. CRC. Crit Rev Microbiol 3(4):469–485

    Article  CAS  Google Scholar 

  • Gerber NN, Gauthier M (1979) New prodigiosin-like pigment from Alteromonas rubra. Appl Environ Microbiol 37(6):1176–1179

    CAS  Google Scholar 

  • Gupte M, Kulkarni P, Ganguli B (2002) Antifungal antibiotics. Appl Microbiol Biotechnol 58(1):46

    Article  CAS  Google Scholar 

  • Guyomarc’h F, Binet A, Dufossé L (2000) Production of carotenoids by Brevibacterium linens: variation among strains, kinetic aspects and HPLC profiles. J Ind Microbiol Biotechnol 24(1):64–70

    Article  Google Scholar 

  • Hendry GAF, Houghton J (1996) Natural food colorants. Springer Science & Business Media

  • Herz S, Weber RW, Anke H, Mucci A, Davoli P (2007) Intermediates in the oxidative pathway from torulene to torularhodin in the red yeasts Cystofilobasidium infirmominiatum and C. capitatum (Heterobasidiomycetes, Fungi). Phytochem 68(20):2503–2511

    Article  CAS  Google Scholar 

  • Hobson DKWD (1998) Green colorants. J Soc Dyers Colour 114:42–44

    Article  CAS  Google Scholar 

  • Houbraken J, Frisvad JC, Seifert K, Overy DP, Tuthill D, Valdez J, Samson R (2012) New penicillin-producing Penicillium species and an overview of section Chrysogena. Persoonia: Molecular Phylogeny and Evolution of Fungi 29:78

  • Howarth S, Dedman M (1964) Pigmentation Variants of Pseudomonas aeruginosa. J Bacteriol 88(2):273–278

    CAS  Google Scholar 

  • Huang P (1964) Recombination and complementation of albino mutants in Neurospora. Genet 49(3):453

    CAS  Google Scholar 

  • Ichiyama S, Shimokata K, Tsukamura M (1989) Carotenoid pigments of genus Rhodococcus. Microbiol Immunol 33(6):503–508

    Article  CAS  Google Scholar 

  • Johnson EA (2003) Phaffia rhodozyma: colorful odyssey. Int Microbiol 6(3):169–174

    Article  CAS  Google Scholar 

  • Johnson EA, Villa TG, Lewis MJ, Phaff HJ (1978) Simple method for the isolation of astaxanthin from the basidiomycetous yeast Phaffia rhodozyma. Appl Environ Microbiol 35(6):1155–1159

    CAS  Google Scholar 

  • Joshi V, Attri D, Bala A, Bhushan S (2003) Microbial pigments. Indian  J Biotechnol 2(362):9  

    Google Scholar 

  • Katsube N, Iwashita K, Tsushida T, Yamaki K, Kobori M (2003) Induction of apoptosis in cancer cells by bilberry (Vaccinium myrtillus) and the anthocyanins. J Agric Food Chem 51(1):68–75

    Article  CAS  Google Scholar 

  • Kawauchi K, Shibutani K, Yagisawa H, Kamata H, Nakatsuji S, Anzai H, Yokoyama Y, Ikegami Y, Moriyama Y, Hirata H (1997) A Possible Immunosuppressant, Cycloprodigiosin Hydrochloride, Obtained from Pseudoalteromonas denitrificans. Biochem Biophys Res Commun 237(3):543–547

    Article  CAS  Google Scholar 

  • Khaneja R, Perez-Fons L, Fakhry S, Baccigalupi L, Steiger S, To E, Sandmann G, Dong T, Ricca E, Fraser P (2010) Carotenoids found in Bacillus. J Applied Microbiol 108(6):1889–1902

    CAS  Google Scholar 

  • Kim H-S, Hayashi M, Shibata Y, Wataya Y, Mitamura T, Horii T, Kawauchi K, Hirata H, Tsuboi S, Moriyama Y (1999) Cycloprodigiosin hydrochloride obtained from Pseudoalteromonas denitrificans is a potent antimalarial agent. Biol Pharm Bull 22(5):532–534

    Article  CAS  Google Scholar 

  • Kim H, Han S, Lee C, Lee K, Park S, Kim Y (2003) Use of prodigiosin for treating diabetes mellitus. Google Patents

  • Kim C, Jung H, Kim JH, Shin CS (2006) Effect of monascus pigment derivatives on the electrophoretic mobility of bacteria, and the cell adsorption and antibacterial activities of pigments. Colloids Surf B 47(2):153–159

    Article  CAS  Google Scholar 

  • Kim D, Lee J, Park Y, Kim J, Jeong H, Oh TK, Kim B, Lee C (2007) Biosynthesis of antibiotic prodiginines in the marine bacterium Hahella chejuensis KCTC 2396. J Appl Microbiol 102(4):937–944

    CAS  Google Scholar 

  • Kim HW, Kim JB, Cho SM, Chung MN, Lee YM, Chu SM, Che JH, Kim SN, Kim SY, Cho YS (2012) Anthocyanin changes in the Korean purple-fleshed sweet potato, Shinzami, as affected by steaming and baking. Food Chem 130(4):966–972

    Article  CAS  Google Scholar 

  • Kodach LL, Bos CL, Durán N, Peppelenbosch MP, Ferreira CV, Hardwick JC (2005) Violacein synergistically increases 5-fluorouracil cytotoxicity, induces apoptosis and inhibits Akt-mediated signal transduction in human colorectal cancer cells. Carcinog 27(3):508–516

    Article  Google Scholar 

  • Kodach LL, Bos CL, Durán N, Peppelenbosch MP, Ferreira CV, Hardwick JC (2006) Violacein synergistically increases 5-fluorouracil cytotoxicity, induces apoptosis and inhibits Akt-mediated signal transduction in human colorectal cancer cells. Carcinogenesis 27(3):508–516

    Article  CAS  Google Scholar 

  • Koes RE, Quattrocchio F, Mol JN (1994) The flavonoid biosynthetic pathway in plants: function and evolution. BioEssays 16(2):123–132

    Article  CAS  Google Scholar 

  • Kong J-M, Chia L-S, Goh N-K, Chia T-F, Brouillard R (2003) Analysis and biological activities of anthocyanins. Phytochemistry 64(5):923–933

    Article  CAS  Google Scholar 

  • Konuray G, Erginkaya Z (2015) Antimicrobial and antioxidant properties of pigments synthesized from microorganisms. The Battle Against Microbial Pathogens: Basic Science, Technological Advances and Educational Programs (A Méndez-Vilas, Ed) FORMATEX:27-33

  • Konzen M, De Marco D, Cordova CA, Vieira TO, Antônio RV, Creczynski-Pasa TB (2006) Antioxidant properties of violacein: possible relation on its biological function. Bioorg Med Chem 14(24):8307–8313

    Article  CAS  Google Scholar 

  • Korkina L (2007) Phenylpropanoids as naturally occurring antioxidants: from plant defense to human health. Cell Mol Biol 53(1):15–25

    CAS  Google Scholar 

  • Krishnamurthy K, Siva R, Senthil T (2002) Natural dye-yielding plants of Shervaroy Hills of Eastern Ghats. In: Proceedings of National Seminar on the Conservation of the Eastern Ghats, Environment Protection Training and Research Institute, Hyderabad, pp 24–26

  • Lazzè MC, Savio M, Pizzala R, Cazzalini O, Perucca P, Scovassi AI, Stivala LA, Bianchi L (2004) Anthocyanins induce cell cycle perturbations and apoptosis in different human cell lines. Carcinogenesis 25(8):1427–1433

    Article  Google Scholar 

  • Lazaro J, Nitcheu J, Predicala RZ, Mangalindan GC, Nesslany F, Marzin D, Concepcion GP, Diquet B (2002) Heptyl prodigiosin, a bacterial metabolite, is antimalarial in vivo and non-mutagenic in vitro. J Nat Toxins 11(4):367–377

    CAS  Google Scholar 

  • Leon LL, Machado GM, de Carvalho Paes LE, Grimaldi G (1990) Antigenic differences of Leishmania amazonensis isolates causing diffuse cutaneous leishmaniasis. Trans R Soc Trop Med Hyg 84(5):678–680

    Article  CAS  Google Scholar 

  • Leon LL, Machado G, Barral A, Carvalho-Paes LEd, Grimaldi Júnior G (1992) Antigenic differences among Leishmania amazonensis isolates and their relationship with distinct clinical forms of the disease. Memórias do Instituto Oswaldo Cruz 87(2):229–234

    Article  CAS  Google Scholar 

  • Leon L, Miranda C, De Souza A, Durán N (2001) Antileishmanial activity of the violacein extracted from Chromobacterium violaceum. J Antimicrob Chemother 48(3):449–450

    Article  CAS  Google Scholar 

  • Li JW-H, Vederas JC (2009) Drug discovery and natural products: end of an era or an endless frontier? Science 325(5937):161–165

    Article  Google Scholar 

  • Lichstein HC, Van De Sand VF (1946) The antibiotic activity of violacein, prodigiosin, and phthiocol. J Bacteriol 52(1):145

    CAS  Google Scholar 

  • Lin J, Yan XJ, Zheng L, Ma HH, Chen HM (2005) Cytotoxicity and apoptosis induction of some selected marine bacteria metabolites. J Appl Microbiol 99(6):1373–1382

    Article  CAS  Google Scholar 

  • Lowe SW, Lin AW (2000) Apoptosis in cancer. Carcinogenesis 21(3):485–495

    Article  CAS  Google Scholar 

  • Malik K, Tokkas J, Goyal S (2012) Microbial pigments: a review. Int J Microbial Res Technol 1(4):361–365

    Google Scholar 

  • Mapari SA, Nielsen KF, Larsen TO, Frisvad JC, Meyer AS, Thrane U (2005) Exploring fungal biodiversity for the production of water-soluble pigments as potential natural food colorants. Curr Opin Biotechnol 16(2):231–238

    Article  CAS  Google Scholar 

  • Mapari SA, Meyer AS, Thrane U, Frisvad JC (2009) Identification of potentially safe promising fungal cell factories for the production of polyketide natural food colorants using chemotaxonomic rationale. Microb Cell Fact 8(1):24

    Article  Google Scholar 

  • Martin S, Giannone G, Andriantsitohaina R, Carmen Martinez M (2003) Delphinidin, an active compound of red wine, inhibits endothelial cell apoptosis via nitric oxide pathway and regulation of calcium homeostasis. Br J Pharmacol 139(6):1095–1102

    Article  CAS  Google Scholar 

  • Matz C, Deines P, Boenigk J, Arndt H, Eberl L, Kjelleberg S, Jürgens K (2004) Impact of violacein-producing bacteria on survival and feeding of bacterivorous nanoflagellates. Appl Environ Microbiol 70(3):1593–1599

    Article  CAS  Google Scholar 

  • McConkey DJ, Zhivotovsky B, Orrenius S (1996) Apoptosis—molecular mechanisms and biomedical implications. Mol Aspects Med 17(1):1517396771–315376569110

    Article  Google Scholar 

  • Mellouli L, Ameur-Mehdi RB, Sioud S, Salem M, Bejar S (2003) Isolation, purification and partial characterization of antibacterial activities produced by a newly isolated Streptomyces sp. US24 strain. Res Microbiol 154(5):345–352

    Article  CAS  Google Scholar 

  • Miller M, Yoneyama M, Soneda M (1976) Phaffia, a new yeast genus in the Deuteromycotina (Blastomycetes). Int J Syst Evol Microbiol 26(2):286–291

    Google Scholar 

  • Mohana DC, Thippeswamy S, Abhishek RU (2013) Antioxidant, antibacterial, and ultraviolet-protective properties of carotenoids isolated from Micrococcus spp. Radiation Prot Environ 36(4):168

    Article  Google Scholar 

  • Mukherjee G, Singh SK (2011) Purification and characterization of a new red pigment from Monascus purpureus in submerged fermentation. Process Biochem 46(1):188–192

    Article  CAS  Google Scholar 

  • Nagpal N, Munjal N, Chatterjee S (2011) Microbial pigments with health benefits-A mini review. Trends Biosci 4(2):157–160

    Google Scholar 

  • Nakamura Y, Sawada T, Morita Y, Tamiya E (2002) Isolation of a psychrotrophic bacterium from the organic residue of a water tank keeping rainbow trout and antibacterial effect of violet pigment produced from the strain. Biochem Eng J 12(1):79–86

    Article  CAS  Google Scholar 

  • Nuijen B, Bouma M, Manada C, Jimeno J, Schellens JH, Bult A, Beijnen J (2000) Pharmaceutical development of anticancer agents derived from marine sources. Anticancer Drugs 11(10):793–811

    Article  CAS  Google Scholar 

  • Palanichamy V, Hundet A, Mitra B, Reddy N (2011) Optimization of cultivation parameters for growth and pigment production by Streptomyces spp. isolated from marine sediment and rhizosphere soil. Int J Plant Animal Env Sci 1(3):158–170

  • Pandey RC, Sainis Ramesh, Krishna B (2007) Prodigiosins: a novel family of immunosuppressants with anti-cancer activity. Indian J Biochem Biophys 44(5):295–302

    CAS  Google Scholar 

  • Parajó J, Santos V, Vázquez M (1998) Optimization of carotenoid production by Phaffia rhodozyma cells grown on xylose. Process Biochem 33(2):181–187

    Article  Google Scholar 

  • PDS Melo, Maria SS, Vidal BDC, Haun M, Durán N (2000) Violacein cytotoxicity and induction of apoptosis in V79 cells. Vitro Cellular & Developmental Biology-Animal 36(8):539–543

    Article  Google Scholar 

  • Radjasa OK, Limantara L, Sabdono A (2009) Antibacterial activity of a pigment producing-bacterium associated with Halimeda sp. from eland-locked marine lake kakaban, Indonesia. J Coast Dev 12(2):100–104

    Google Scholar 

  • Rashid M, Fakruddin M, Mazumdar RM, Kaniz F, Chowdhury M (2014) Anti-bacterial activity of pigments isolated from pigment-forming soil bacteria

  • Richard C (1992) Chromobacterium violaceum, opportunist pathogenic bacteria in tropical and subtropical regions. Bull Soc Pathol Exot (1990) 86(3):169–173

    Google Scholar 

  • Sánchez C, Braña AF, Méndez C, Salas JA (2006) Reevaluation of the violacein biosynthetic pathway and its relationship to indolocarbazole biosynthesis. ChemBioChem 7(8):1231–1240

    Article  Google Scholar 

  • Saraiva VS, Marshall JC, Cools-Lartigue J, Burnier Jr MN (2004) Cytotoxic effects of violacein in human uveal melanoma cell lines. Melanoma Res 14(5):421–424

    Article  CAS  Google Scholar 

  • Schwartsmann G, Brondani A, Berlinck R, Jimeno J (2000) Marine organisms and other novel natural sources of new cancer drugs. Ann Oncol 11(3):235–243

    Google Scholar 

  • Schwartsmann G, da Rocha AB, Berlinck RG, Jimeno J (2001) Marine organisms as a source of new anticancer agents. Lancet Oncol 2(4):221–225

    Article  CAS  Google Scholar 

  • Shirata A, Tsukamoto T, Yasui H, Hata T, Hayasaka S, Kojima A, Kato H (2000) Isolation of bacteria producing bluish-purple pigment and use for dyeing. JARQ (Japan)

  • Singh M, Kumar A, Singh R, Pandey KD (2017) Endophytic bacteria: a new source of bioactive compounds. 3. Biotech 7(5):315

    Google Scholar 

  • Soliev AB, Hosokawa K, Enomoto K (2011) Bioactive pigments from marine bacteria: applications and physiological roles. Evidence-Based Complementary and Alternative Medicine 2011

  • Sowbhagya H, Chitra V (2010) Enzyme-assisted extraction of flavorings and colorants from plant materials. Crit Rev Food Sci Nutr 50(2):146–161

    Article  CAS  Google Scholar 

  • Suresh M, Renugadevi B, Brammavidhya S, Iyapparaj P, Anantharaman P (2015) Antibacterial activity of red pigment produced by halolactibacillus alkaliphilus MSRD1—an isolate from seaweed. Appl Biochem Biotechnol 176(1):185–195

    Article  CAS  Google Scholar 

  • Taylor MW, Radax R, Steger D, Wagner M (2007) Sponge-associated microorganisms: evolution, ecology, and biotechnological potential. Microbiol Mol Biol Rev 71(2):295–347

    Article  CAS  Google Scholar 

  • Umadevi K, Krishnaveni M (2013) Antibacterial activity of pigment produced from Micrococcus luteus KF532949. Int J Chem Anal Sci 4(3):149–152

    Article  CAS  Google Scholar 

  • Ungureanu C, Ferdes M (2012) Evaluation of antioxidant and antimicrobial activities of torularhodin. Adv Sci Lett 18(1):50–53

    Article  CAS  Google Scholar 

  • Venil CK, Lakshmanaperumalsamy P (2009) An insightful overview on microbial pigment, prodigiosin. Electron J Biol 5(3):49–61

    Google Scholar 

  • Venil CK, Zakaria ZA, Ahmad WA (2013) Bacterial pigments and their applications. Process Biochem 48(7):1065–1079

    Article  CAS  Google Scholar 

  • Wang J, Mazza G (2002) Effects of anthocyanins and other phenolic compounds on the production of tumor necrosis factor α in LPS/IFN-γ-activated RAW 264.7 macrophages. J Agric Food Chem 50(15):4183–4189

    Article  CAS  Google Scholar 

  • Yadav S, Manjunatha K, Ramachandra B, Suchitra N, Prabha R (2014) Characterization of pigment producing rhodotorula from dairy environmental samples. Asian J Dairying & Foods Res 33(1):1–4

    Article  Google Scholar 

  • Yamamoto C, Takemoto H, Kuno K, Yamamoto D, Tsubura A, Kamata K, Hirata H, Yamamoto A, Kano H, Seki T (1999) Cycloprodigiosin hydrochloride, a new H+/Cl− symporter, induces apoptosis in human and rat hepatocellular cancer cell lines in vitro and inhibits the growth of hepatocellular carcinoma xenografts in nude mice. Hepatol 30(4):894–902

    Article  CAS  Google Scholar 

  • Youdim KA, McDonald J, Kalt W, Joseph JA (2002) Potential role of dietary flavonoids in reducing microvascular endothelium vulnerability to oxidative and inflammatory insults. J Nutr Biochem 13(5):282–288

    Article  CAS  Google Scholar 

  • Zhang H, Zhan J, Su K, Zhang Y (2006) A kind of potential food additive produced by Streptomyces coelicolor: characteristics of blue pigment and identification of a novel compound, λ-actinorhodin. Food Chem 95(2):186–192

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Najeeb Ur Rehman, Zabta Khan Shinwari or Ahmed Al-Harrasi.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Numan, M., Bashir, S., Mumtaz, R. et al. Therapeutic applications of bacterial pigments: a review of current status and future opportunities. 3 Biotech 8, 207 (2018). https://doi.org/10.1007/s13205-018-1227-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13205-018-1227-x

Keywords

Navigation