3 Biotech

, 8:207 | Cite as

Therapeutic applications of bacterial pigments: a review of current status and future opportunities

Review Article

Abstract

Non-toxicity, biodegradability and non-carcinogenicity of the natural pigments, dyes and colorants make them an attractive source for human use. Bacterial pigments are colored metabolites secreted by bacteria under stress. The industrial uses of bacterial pigments have increased many folds because of several advantages over the synthetic pigments. Among natural resources, bacterial pigments are mostly preferred because of simple culturing and pigment extraction techniques, scaling up and being time economical. Generally, the bacterial pigments are safe for human use and therefore have a wide range of applications in pharmaceutical, textile, cosmetics and food industries. Therapeutic nature of the bacterial pigments is revealed because of their antimicrobial, anticancer, cytotoxic and remarkable antioxidant properties. Owing to the importance of bacterial pigments it was considered important to produce a comprehensive review of literature on the therapeutic and industrial potential of bacterial pigments. Extensive literature has been reviewed on the biomedical application of bacterial pigments while further opportunities and future challenges have been discussed.

Keywords

Bacteria Natural pigments Antibacterial Anticancer Antileishmania Antioxidant 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this manuscript.

References

  1. Aberoumand A (2011) A review article on edible pigments properties and sources as natural biocolorants in foodstuff and food industry. World J Dairy Food Sci 6(1):71–78Google Scholar
  2. Ahmad WA, Ahmad WYW, Zakaria ZA, Yusof NZ (2012) Application of bacterial pigments as colorant. In: Application of bacterial pigments as colorant. Springer, pp 57–74Google Scholar
  3. Alihosseini F, Ju KS, Lango J, Hammock BD, Sun G (2008) Antibacterial colorants: characterization of prodiginines and their applications on textile materials. Biotechnol Prog 24(3):742–747CrossRefGoogle Scholar
  4. Andrighetti-Fröhner CR, Antonio RV, Creczynski-Pasa TB, Barardi CRM, Simões CMO (2003) Cytotoxicity and potential antiviral evaluation of violacein produced by Chromobacterium violaceum. Memórias do Instituto Oswaldo Cruz 98(6):843–848CrossRefGoogle Scholar
  5. Arun N, Singh D (2013) Differential response of Dunaliella salina and Dunaliella tertiolecta isolated from brines of Sambhar Salt Lake of Rajasthan (India) to salinities: a study on growth, pigment and glycerol synthesis. J Mar Biol Assoc India 55(1):65–70CrossRefGoogle Scholar
  6. August P, Grossman T, Minor C, Draper M, MacNeil I, Pemberton J, Call K, Holt D, Osburne M (2000) Sequence analysis and functional characterization of the violacein biosynthetic pathway from Chromobacterium violaceum. J Mol Microbiol Biotechnol 2(4):513–519Google Scholar
  7. Asker D, Ohta Y (2002) Production of canthaxanthin by Haloferax alexandrinus under non-aseptic conditions and a simple, rapid method for its extraction. Appl Microbiol Biotechnol 58(6):743–750CrossRefGoogle Scholar
  8. Banerjee D, Chatterjee S, Banerjee U, Guha AK, Ray L (2011) Green Pigment from Bacillus cereus M116 (MTCC 5521): production parameters and antibacterial activity. Appl Biochem Biotechnol 164(6):767–779CrossRefGoogle Scholar
  9. Bohlke K, Spiegelman D, Trichopoulou A, Katsouyanni K, Trichopoulos D (1999) Vitamins A, C and E and the risk of breast cancer: results from a case-control study in Greece. Br J Cancer 79(1):23CrossRefGoogle Scholar
  10. Boo H-O, Hwang S-J, Bae C-S, Park S-H, Song W-S (2011) Antioxidant activity according to each kind of natural plant pigments. Korean J Plant Resour 24(1):105–112CrossRefGoogle Scholar
  11. Campas C, Dalmau M, Montaner B, Barragan M, Bellosillo B, Colomer D, Pons G, Pérez-Tomás R, Gil J (2003) Prodigiosin induces apoptosis of B and T cells from B-cell chronic lymphocytic leukemia. Leukemia 17(4):746–750CrossRefGoogle Scholar
  12. Carte BK (1996) Biomedical potential of marine natural products. Bioscience 46(4):271–286CrossRefGoogle Scholar
  13. Carreira A, Ferreira L, Loureiro V (2001a) Production of brown tyrosine pigments by the yeast Yarrowia lipolytica. J App Microbiol 90(3):372–379CrossRefGoogle Scholar
  14. Carreira A, Ferreira LM, Loureiro Vl (2001b) Brown pigments produced by Yarrowia lipolytica result from extracellular accumulation of homogentisic acid. Appl Environ Microbiol 67(8):3463–3468CrossRefGoogle Scholar
  15. Chandi GK, Gill BS (2011) Production and characterization of microbial carotenoids as an alternative to synthetic colors: a review. Int J Food Prop 14(3):503–513CrossRefGoogle Scholar
  16. Chávez R, Fierro F, García-Rico RO, Laich F (2011) Mold-fermented foods: Penicillium spp. as ripening agents in the elaboration of cheese and meat products. In: Mycofactories. Bentham Science Publishers Ltd.,Google Scholar
  17. Chen M-T, Tseng Y-Y Efficacy of antimicrobial substances from Monascus metabolites on preservation of meat. In: 35. International Congress of Meat Science and Technology, Copenhagen (Denmark), 20–25 Aug 1989, 1989. SFIGoogle Scholar
  18. Choi SY, Yoon K-h, Lee JI, Mitchell RJ (2015) Violacein: properties and production of a versatile bacterial pigment. BioMed research international 2015Google Scholar
  19. Cragg GM, Newman DJ (1999) Discovery and development of antineoplastic agents from natural sources. Cancer Invest 17(2):153–163CrossRefGoogle Scholar
  20. Cserháti T (2006) Liquid chromatography of natural pigments and synthetic dyes, vol 71. Elsevier,Google Scholar
  21. De Carvalho DD, Fabio TM, Costa, Duran N, Duran M (2006) Cytotoxic activity of violacein in human colon cancer cells. Toxicol in Vitro 20(8):1514–1521CrossRefGoogle Scholar
  22. Davoli P, Weber RW (2002) Carotenoid pigments from the red mirror yeast. Sporobolomyces roseus. Mycologist 16(3):102–108Google Scholar
  23. Demain AL (1980) Microbial production of primary metabolites. Naturwissenschaften 67(12):582–587CrossRefGoogle Scholar
  24. Duerre JA, Buckley PJ (1965) Pigment production from tryptophan by an Achromobacter species. J Bacteriol 90(6):1686–1691Google Scholar
  25. Dufossé L (2006) Microbial production of food grade pigments. Food Technology and Biotechnology 44(3):313–323Google Scholar
  26. Duran M, Ponezi AN, Faljoni-Alario A, Teixeira MF, Justo GZ, Duran N (2012) Potential applications of violacein: a microbial pigment. Med Chem Res 21(7):1524–1532CrossRefGoogle Scholar
  27. S.editors B (2009) Microbial pigments. Biotechnology for agro-industrial residues, 8. Dodrdrecht. SpringerGoogle Scholar
  28. El-Banna AAE-R, El-Razek AMA, El-Mahdy AR (2012) Isolation, identification and screening of carotenoid-producing strains of Rhodotorula glutinis. Food Nutr Sci 3(05):627CrossRefGoogle Scholar
  29. Fenical W (1997) New pharmaceuticals from marine organisms. Trends Biotechnol 15(9):339–341CrossRefGoogle Scholar
  30. Ferreira CV, Bos CL, Versteeg HH, Justo GZ, Durán N, Peppelenbosch MP (2004) Molecular mechanism of violacein-mediated human leukemia cell death. Blood 104(5):1459–1464CrossRefGoogle Scholar
  31. Frandsen RJ, Nielsen NJ, Maolanon N, Sørensen JC, Olsson S, Nielsen J, Giese H (2006) The biosynthetic pathway for aurofusarin in Fusarium graminearum reveals a close link between the naphthoquinones and naphthopyrones. Mol Microbiol 61(4):1069–1080CrossRefGoogle Scholar
  32. Galaup P, Sutthiwong N, Leclercq-Perlat MN, Valla A, Caro Y, Fouillaud M, Guérard F, Dufossé L (2015) First isolation of Brevibacterium sp. pigments in the rind of an industrial red-smear-ripened soft cheese. Int J Dairy Technol 68(1):144–147CrossRefGoogle Scholar
  33. Gerber NN (1975) Prodigiosin-like pigments. CRC. Crit Rev Microbiol 3(4):469–485CrossRefGoogle Scholar
  34. Gerber NN, Gauthier M (1979) New prodigiosin-like pigment from Alteromonas rubra. Appl Environ Microbiol 37(6):1176–1179Google Scholar
  35. Gupte M, Kulkarni P, Ganguli B (2002) Antifungal antibiotics. Appl Microbiol Biotechnol 58(1):46CrossRefGoogle Scholar
  36. Guyomarc’h F, Binet A, Dufossé L (2000) Production of carotenoids by Brevibacterium linens: variation among strains, kinetic aspects and HPLC profiles. J Ind Microbiol Biotechnol 24(1):64–70CrossRefGoogle Scholar
  37. Hendry GAF, Houghton J (1996) Natural food colorants. Springer Science & Business MediaGoogle Scholar
  38. Herz S, Weber RW, Anke H, Mucci A, Davoli P (2007) Intermediates in the oxidative pathway from torulene to torularhodin in the red yeasts Cystofilobasidium infirmominiatum and C. capitatum (Heterobasidiomycetes, Fungi). Phytochem 68(20):2503–2511CrossRefGoogle Scholar
  39. Hobson DKWD (1998) Green colorants. J Soc Dyers Colour 114:42–44CrossRefGoogle Scholar
  40. Houbraken J, Frisvad JC, Seifert K, Overy DP, Tuthill D, Valdez J, Samson R (2012) New penicillin-producing Penicillium species and an overview of section Chrysogena. Persoonia: Molecular Phylogeny and Evolution of Fungi 29:78Google Scholar
  41. Howarth S, Dedman M (1964) Pigmentation Variants of Pseudomonas aeruginosa. J Bacteriol 88(2):273–278Google Scholar
  42. Huang P (1964) Recombination and complementation of albino mutants in Neurospora. Genet 49(3):453Google Scholar
  43. Ichiyama S, Shimokata K, Tsukamura M (1989) Carotenoid pigments of genus Rhodococcus. Microbiol Immunol 33(6):503–508CrossRefGoogle Scholar
  44. Johnson EA (2003) Phaffia rhodozyma: colorful odyssey. Int Microbiol 6(3):169–174CrossRefGoogle Scholar
  45. Johnson EA, Villa TG, Lewis MJ, Phaff HJ (1978) Simple method for the isolation of astaxanthin from the basidiomycetous yeast Phaffia rhodozyma. Appl Environ Microbiol 35(6):1155–1159Google Scholar
  46. Joshi V, Attri D, Bala A, Bhushan S (2003) Microbial pigments. Indian  J Biotechnol 2(362):9  Google Scholar
  47. Katsube N, Iwashita K, Tsushida T, Yamaki K, Kobori M (2003) Induction of apoptosis in cancer cells by bilberry (Vaccinium myrtillus) and the anthocyanins. J Agric Food Chem 51(1):68–75CrossRefGoogle Scholar
  48. Kawauchi K, Shibutani K, Yagisawa H, Kamata H, Nakatsuji S, Anzai H, Yokoyama Y, Ikegami Y, Moriyama Y, Hirata H (1997) A Possible Immunosuppressant, Cycloprodigiosin Hydrochloride, Obtained from Pseudoalteromonas denitrificans. Biochem Biophys Res Commun 237(3):543–547CrossRefGoogle Scholar
  49. Khaneja R, Perez-Fons L, Fakhry S, Baccigalupi L, Steiger S, To E, Sandmann G, Dong T, Ricca E, Fraser P (2010) Carotenoids found in Bacillus. J Applied Microbiol 108(6):1889–1902Google Scholar
  50. Kim H-S, Hayashi M, Shibata Y, Wataya Y, Mitamura T, Horii T, Kawauchi K, Hirata H, Tsuboi S, Moriyama Y (1999) Cycloprodigiosin hydrochloride obtained from Pseudoalteromonas denitrificans is a potent antimalarial agent. Biol Pharm Bull 22(5):532–534CrossRefGoogle Scholar
  51. Kim H, Han S, Lee C, Lee K, Park S, Kim Y (2003) Use of prodigiosin for treating diabetes mellitus. Google PatentsGoogle Scholar
  52. Kim C, Jung H, Kim JH, Shin CS (2006) Effect of monascus pigment derivatives on the electrophoretic mobility of bacteria, and the cell adsorption and antibacterial activities of pigments. Colloids Surf B 47(2):153–159CrossRefGoogle Scholar
  53. Kim D, Lee J, Park Y, Kim J, Jeong H, Oh TK, Kim B, Lee C (2007) Biosynthesis of antibiotic prodiginines in the marine bacterium Hahella chejuensis KCTC 2396. J Appl Microbiol 102(4):937–944Google Scholar
  54. Kim HW, Kim JB, Cho SM, Chung MN, Lee YM, Chu SM, Che JH, Kim SN, Kim SY, Cho YS (2012) Anthocyanin changes in the Korean purple-fleshed sweet potato, Shinzami, as affected by steaming and baking. Food Chem 130(4):966–972CrossRefGoogle Scholar
  55. Kodach LL, Bos CL, Durán N, Peppelenbosch MP, Ferreira CV, Hardwick JC (2005) Violacein synergistically increases 5-fluorouracil cytotoxicity, induces apoptosis and inhibits Akt-mediated signal transduction in human colorectal cancer cells. Carcinog 27(3):508–516CrossRefGoogle Scholar
  56. Kodach LL, Bos CL, Durán N, Peppelenbosch MP, Ferreira CV, Hardwick JC (2006) Violacein synergistically increases 5-fluorouracil cytotoxicity, induces apoptosis and inhibits Akt-mediated signal transduction in human colorectal cancer cells. Carcinogenesis 27(3):508–516CrossRefGoogle Scholar
  57. Koes RE, Quattrocchio F, Mol JN (1994) The flavonoid biosynthetic pathway in plants: function and evolution. BioEssays 16(2):123–132CrossRefGoogle Scholar
  58. Kong J-M, Chia L-S, Goh N-K, Chia T-F, Brouillard R (2003) Analysis and biological activities of anthocyanins. Phytochemistry 64(5):923–933CrossRefGoogle Scholar
  59. Konuray G, Erginkaya Z (2015) Antimicrobial and antioxidant properties of pigments synthesized from microorganisms. The Battle Against Microbial Pathogens: Basic Science, Technological Advances and Educational Programs (A Méndez-Vilas, Ed) FORMATEX:27-33Google Scholar
  60. Konzen M, De Marco D, Cordova CA, Vieira TO, Antônio RV, Creczynski-Pasa TB (2006) Antioxidant properties of violacein: possible relation on its biological function. Bioorg Med Chem 14(24):8307–8313CrossRefGoogle Scholar
  61. Korkina L (2007) Phenylpropanoids as naturally occurring antioxidants: from plant defense to human health. Cell Mol Biol 53(1):15–25Google Scholar
  62. Krishnamurthy K, Siva R, Senthil T (2002) Natural dye-yielding plants of Shervaroy Hills of Eastern Ghats. In: Proceedings of National Seminar on the Conservation of the Eastern Ghats, Environment Protection Training and Research Institute, Hyderabad, pp 24–26Google Scholar
  63. Lazzè MC, Savio M, Pizzala R, Cazzalini O, Perucca P, Scovassi AI, Stivala LA, Bianchi L (2004) Anthocyanins induce cell cycle perturbations and apoptosis in different human cell lines. Carcinogenesis 25(8):1427–1433CrossRefGoogle Scholar
  64. Lazaro J, Nitcheu J, Predicala RZ, Mangalindan GC, Nesslany F, Marzin D, Concepcion GP, Diquet B (2002) Heptyl prodigiosin, a bacterial metabolite, is antimalarial in vivo and non-mutagenic in vitro. J Nat Toxins 11(4):367–377Google Scholar
  65. Leon LL, Machado GM, de Carvalho Paes LE, Grimaldi G (1990) Antigenic differences of Leishmania amazonensis isolates causing diffuse cutaneous leishmaniasis. Trans R Soc Trop Med Hyg 84(5):678–680CrossRefGoogle Scholar
  66. Leon LL, Machado G, Barral A, Carvalho-Paes LEd, Grimaldi Júnior G (1992) Antigenic differences among Leishmania amazonensis isolates and their relationship with distinct clinical forms of the disease. Memórias do Instituto Oswaldo Cruz 87(2):229–234CrossRefGoogle Scholar
  67. Leon L, Miranda C, De Souza A, Durán N (2001) Antileishmanial activity of the violacein extracted from Chromobacterium violaceum. J Antimicrob Chemother 48(3):449–450CrossRefGoogle Scholar
  68. Li JW-H, Vederas JC (2009) Drug discovery and natural products: end of an era or an endless frontier? Science 325(5937):161–165CrossRefGoogle Scholar
  69. Lichstein HC, Van De Sand VF (1946) The antibiotic activity of violacein, prodigiosin, and phthiocol. J Bacteriol 52(1):145Google Scholar
  70. Lin J, Yan XJ, Zheng L, Ma HH, Chen HM (2005) Cytotoxicity and apoptosis induction of some selected marine bacteria metabolites. J Appl Microbiol 99(6):1373–1382CrossRefGoogle Scholar
  71. Lowe SW, Lin AW (2000) Apoptosis in cancer. Carcinogenesis 21(3):485–495CrossRefGoogle Scholar
  72. Malik K, Tokkas J, Goyal S (2012) Microbial pigments: a review. Int J Microbial Res Technol 1(4):361–365Google Scholar
  73. Mapari SA, Nielsen KF, Larsen TO, Frisvad JC, Meyer AS, Thrane U (2005) Exploring fungal biodiversity for the production of water-soluble pigments as potential natural food colorants. Curr Opin Biotechnol 16(2):231–238CrossRefGoogle Scholar
  74. Mapari SA, Meyer AS, Thrane U, Frisvad JC (2009) Identification of potentially safe promising fungal cell factories for the production of polyketide natural food colorants using chemotaxonomic rationale. Microb Cell Fact 8(1):24CrossRefGoogle Scholar
  75. Martin S, Giannone G, Andriantsitohaina R, Carmen Martinez M (2003) Delphinidin, an active compound of red wine, inhibits endothelial cell apoptosis via nitric oxide pathway and regulation of calcium homeostasis. Br J Pharmacol 139(6):1095–1102CrossRefGoogle Scholar
  76. Matz C, Deines P, Boenigk J, Arndt H, Eberl L, Kjelleberg S, Jürgens K (2004) Impact of violacein-producing bacteria on survival and feeding of bacterivorous nanoflagellates. Appl Environ Microbiol 70(3):1593–1599CrossRefGoogle Scholar
  77. McConkey DJ, Zhivotovsky B, Orrenius S (1996) Apoptosis—molecular mechanisms and biomedical implications. Mol Aspects Med 17(1):1517396771–315376569110CrossRefGoogle Scholar
  78. Mellouli L, Ameur-Mehdi RB, Sioud S, Salem M, Bejar S (2003) Isolation, purification and partial characterization of antibacterial activities produced by a newly isolated Streptomyces sp. US24 strain. Res Microbiol 154(5):345–352CrossRefGoogle Scholar
  79. Miller M, Yoneyama M, Soneda M (1976) Phaffia, a new yeast genus in the Deuteromycotina (Blastomycetes). Int J Syst Evol Microbiol 26(2):286–291Google Scholar
  80. Mohana DC, Thippeswamy S, Abhishek RU (2013) Antioxidant, antibacterial, and ultraviolet-protective properties of carotenoids isolated from Micrococcus spp. Radiation Prot Environ 36(4):168CrossRefGoogle Scholar
  81. Mukherjee G, Singh SK (2011) Purification and characterization of a new red pigment from Monascus purpureus in submerged fermentation. Process Biochem 46(1):188–192CrossRefGoogle Scholar
  82. Nagpal N, Munjal N, Chatterjee S (2011) Microbial pigments with health benefits-A mini review. Trends Biosci 4(2):157–160Google Scholar
  83. Nakamura Y, Sawada T, Morita Y, Tamiya E (2002) Isolation of a psychrotrophic bacterium from the organic residue of a water tank keeping rainbow trout and antibacterial effect of violet pigment produced from the strain. Biochem Eng J 12(1):79–86CrossRefGoogle Scholar
  84. Nuijen B, Bouma M, Manada C, Jimeno J, Schellens JH, Bult A, Beijnen J (2000) Pharmaceutical development of anticancer agents derived from marine sources. Anticancer Drugs 11(10):793–811CrossRefGoogle Scholar
  85. Palanichamy V, Hundet A, Mitra B, Reddy N (2011) Optimization of cultivation parameters for growth and pigment production by Streptomyces spp. isolated from marine sediment and rhizosphere soil. Int J Plant Animal Env Sci 1(3):158–170Google Scholar
  86. Pandey RC, Sainis Ramesh, Krishna B (2007) Prodigiosins: a novel family of immunosuppressants with anti-cancer activity. Indian J Biochem Biophys 44(5):295–302Google Scholar
  87. Parajó J, Santos V, Vázquez M (1998) Optimization of carotenoid production by Phaffia rhodozyma cells grown on xylose. Process Biochem 33(2):181–187CrossRefGoogle Scholar
  88. PDS Melo, Maria SS, Vidal BDC, Haun M, Durán N (2000) Violacein cytotoxicity and induction of apoptosis in V79 cells. Vitro Cellular & Developmental Biology-Animal 36(8):539–543CrossRefGoogle Scholar
  89. Radjasa OK, Limantara L, Sabdono A (2009) Antibacterial activity of a pigment producing-bacterium associated with Halimeda sp. from eland-locked marine lake kakaban, Indonesia. J Coast Dev 12(2):100–104Google Scholar
  90. Rashid M, Fakruddin M, Mazumdar RM, Kaniz F, Chowdhury M (2014) Anti-bacterial activity of pigments isolated from pigment-forming soil bacteriaGoogle Scholar
  91. Richard C (1992) Chromobacterium violaceum, opportunist pathogenic bacteria in tropical and subtropical regions. Bull Soc Pathol Exot (1990) 86(3):169–173Google Scholar
  92. Sánchez C, Braña AF, Méndez C, Salas JA (2006) Reevaluation of the violacein biosynthetic pathway and its relationship to indolocarbazole biosynthesis. ChemBioChem 7(8):1231–1240CrossRefGoogle Scholar
  93. Saraiva VS, Marshall JC, Cools-Lartigue J, Burnier Jr MN (2004) Cytotoxic effects of violacein in human uveal melanoma cell lines. Melanoma Res 14(5):421–424CrossRefGoogle Scholar
  94. Schwartsmann G, Brondani A, Berlinck R, Jimeno J (2000) Marine organisms and other novel natural sources of new cancer drugs. Ann Oncol 11(3):235–243Google Scholar
  95. Schwartsmann G, da Rocha AB, Berlinck RG, Jimeno J (2001) Marine organisms as a source of new anticancer agents. Lancet Oncol 2(4):221–225CrossRefGoogle Scholar
  96. Shirata A, Tsukamoto T, Yasui H, Hata T, Hayasaka S, Kojima A, Kato H (2000) Isolation of bacteria producing bluish-purple pigment and use for dyeing. JARQ (Japan)Google Scholar
  97. Singh M, Kumar A, Singh R, Pandey KD (2017) Endophytic bacteria: a new source of bioactive compounds. 3. Biotech 7(5):315Google Scholar
  98. Soliev AB, Hosokawa K, Enomoto K (2011) Bioactive pigments from marine bacteria: applications and physiological roles. Evidence-Based Complementary and Alternative Medicine 2011Google Scholar
  99. Sowbhagya H, Chitra V (2010) Enzyme-assisted extraction of flavorings and colorants from plant materials. Crit Rev Food Sci Nutr 50(2):146–161CrossRefGoogle Scholar
  100. Suresh M, Renugadevi B, Brammavidhya S, Iyapparaj P, Anantharaman P (2015) Antibacterial activity of red pigment produced by halolactibacillus alkaliphilus MSRD1—an isolate from seaweed. Appl Biochem Biotechnol 176(1):185–195CrossRefGoogle Scholar
  101. Taylor MW, Radax R, Steger D, Wagner M (2007) Sponge-associated microorganisms: evolution, ecology, and biotechnological potential. Microbiol Mol Biol Rev 71(2):295–347CrossRefGoogle Scholar
  102. Umadevi K, Krishnaveni M (2013) Antibacterial activity of pigment produced from Micrococcus luteus KF532949. Int J Chem Anal Sci 4(3):149–152CrossRefGoogle Scholar
  103. Ungureanu C, Ferdes M (2012) Evaluation of antioxidant and antimicrobial activities of torularhodin. Adv Sci Lett 18(1):50–53CrossRefGoogle Scholar
  104. Venil CK, Lakshmanaperumalsamy P (2009) An insightful overview on microbial pigment, prodigiosin. Electron J Biol 5(3):49–61Google Scholar
  105. Venil CK, Zakaria ZA, Ahmad WA (2013) Bacterial pigments and their applications. Process Biochem 48(7):1065–1079CrossRefGoogle Scholar
  106. Wang J, Mazza G (2002) Effects of anthocyanins and other phenolic compounds on the production of tumor necrosis factor α in LPS/IFN-γ-activated RAW 264.7 macrophages. J Agric Food Chem 50(15):4183–4189CrossRefGoogle Scholar
  107. Yadav S, Manjunatha K, Ramachandra B, Suchitra N, Prabha R (2014) Characterization of pigment producing rhodotorula from dairy environmental samples. Asian J Dairying & Foods Res 33(1):1–4CrossRefGoogle Scholar
  108. Yamamoto C, Takemoto H, Kuno K, Yamamoto D, Tsubura A, Kamata K, Hirata H, Yamamoto A, Kano H, Seki T (1999) Cycloprodigiosin hydrochloride, a new H+/Cl− symporter, induces apoptosis in human and rat hepatocellular cancer cell lines in vitro and inhibits the growth of hepatocellular carcinoma xenografts in nude mice. Hepatol 30(4):894–902CrossRefGoogle Scholar
  109. Youdim KA, McDonald J, Kalt W, Joseph JA (2002) Potential role of dietary flavonoids in reducing microvascular endothelium vulnerability to oxidative and inflammatory insults. J Nutr Biochem 13(5):282–288CrossRefGoogle Scholar
  110. Zhang H, Zhan J, Su K, Zhang Y (2006) A kind of potential food additive produced by Streptomyces coelicolor: characteristics of blue pigment and identification of a novel compound, λ-actinorhodin. Food Chem 95(2):186–192CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of BiotechnologyQuaid-i-Azam UniversityIslamabadPakistan
  2. 2.UoN Chair of Oman’s Medicinal Plants and Marine Natural Products, University of Nizwa, Nizwa-616, Sultanate of OmanNizwaOman
  3. 3.Qarshi UniversityLahorePakistan

Personalised recommendations