Skip to main content
Log in

The potential of the newly isolated thermotolerant Kluyveromyces marxianus for high-temperature ethanol production using sweet sorghum juice

  • Original Article
  • Published:
3 Biotech Aims and scope Submit manuscript

Abstract

In this work, the newly isolated thermotolerant Kluyveromyces marxianus DBKKUY-103 exhibited a high ethanol fermentation efficiency at high temperatures using sweet sorghum juice (SSJ). The highest ethanol concentrations and productivities achieved under the optimum conditions using thermotolerant K. marxianus DBKKUY-103 were 85.16 g/l and 1.42 g/l.h at 37 °C and 83.46 g/l and 1.39 g/l.h at 40 °C, respectively. The expression levels of genes during ethanol fermentation at 40 °C were evaluated and the results found that the transcriptional levels of the RAD10, RAD14, RAD33, RAD50, ATPH, ATP4, ATP16, and ATP20 genes were up-regulated compared with those at 30 °C, suggesting that the high growth and high ethanol production efficiencies of K. marxianus DBKKUY-103 during high-temperature ethanol production associated with the genes involved in DNA repair and ATP production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abdel-Fattah WR, Fadil M, Nigam P, Banat IM (2000) Isolation of thermotolerant ethanologenic yeasts and use of selected strains in industrial scale fermentation in an Egyptian distillery. Biotechnol Bioeng 68:531–535

    Article  CAS  Google Scholar 

  • Auesukaree C, Koedrith P, Saenpayavai P, Asvarak T, Benjaphokee S, Sugiyama M, Kaneko Y, Harashima S, Boonchird C (2012) Characterization and gene expression profiles of thermotolerant Saccharomyces cerevisiae isolates from Thai fruits. J Biosci Bioeng 114:144–149

    Article  CAS  Google Scholar 

  • Beltran G, Esteve-Zarzoso B, Rozès N, Mas A, Guillamón JM (2005) Influence of the timing of nitrogen additions during synthetic grape must fermentations on fermentation kinetics and nitrogen consumption. J Agric Food Chem 53:996–1002

    Article  CAS  Google Scholar 

  • Beltran G, Rozès N, Mas A, Guillamón JM (2007) Effect of low-temperature fermentation on yeast nitrogen metabolism. World J Microbiol Biotechnol 23:809–815

    Article  CAS  Google Scholar 

  • Charoensopharat K, Thanonkeo P, Thanonkeo S, Yamada M (2015) Ethanol production from Jerusalem artichoke tubers at high temperature by newly isolated thermotolerant inulin-utilizing yeast Kluyveromyces marxianus using consolidated bioprocessing. Antonie Van Leeuwenhoek J Microb 108:173–190

    Article  CAS  Google Scholar 

  • Ercan Y, Irfan T, Mustafa K (2013) Optimization of ethanol production from carob pod extract using immobilized Saccharomyces cerevisiae cells in a stirred tank bioreactor. Bioresour Technol 135:365–371

    Article  CAS  Google Scholar 

  • Friedberg EC, Walker GC, Siede W (1995) DNA repair and mutagenesis. American Society for Microbiology, Washington, DC

    Google Scholar 

  • Gnansounou E, Dauriat A, Wyman CE (2005) Refining sweet sorghum to ethanol and sugar: economic trade-offs in the context of North China. Bioresour Technol 96:985–1002

    Article  CAS  Google Scholar 

  • Gross C, Watson K (1996) Heat shock protein synthesis and trehalose accumulation are not required for induced thermotolerance in depressed Saccharomyces cerevisiae. Biochem Biophys Res Commun 220:766–772

    Article  CAS  Google Scholar 

  • Hashem M, Zohri ANA, Ali MM (2013) Optimization of the fermentation conditions for ethanol production by new thermotolerant yeast strains of Kluyveromyces sp. Afr J Microbiol Res 7:4550–4561

    Article  Google Scholar 

  • Kim S, Kim YS, Kim H, Jin I, Yoon HS (2013) Saccharomyces cerevisiae KNU5377 stress response during high-temperature ethanol fermentation. Mol Cells 35:210–218

    Article  CAS  Google Scholar 

  • Laopaiboon L, Nuanpeng S, Srinophakun P, Klanrit P, Laopaiboon P (2009) Ethanol production from sweet sorghum juice using very high gravity technology: effects of carbon and nitrogen supplementations. Bioresour Technol 100:4176–4182

    Article  CAS  Google Scholar 

  • Lei JJ, Zhao XQ, Ge XM, Bai FW (2007) Ethanol tolerance and the variation of plasma membrane composition of yeast floc populations with different size distribution. J Biotechnol 131:270–273

    Article  CAS  Google Scholar 

  • Lertwattanasakul N, Kosaka T, Hosoyama A, Suzuki Y, Rodrussamee N, Matsutani M, Murata M, Fujimoto N, Suprayogi Tsuchikane K, Limtong S, Fujita N, Yamada M (2015) Genetic basis of the highly efficient yeast Kluyveromyces marxianus: complete genome sequence and transcriptome analyses. Biotechnol Biofuels 8:47

    Article  Google Scholar 

  • Limtong S, Sringiew C, Yongmanitchai W (2007) Production of fuel ethanol at high temperature from sugar cane juice by a newly isolated Kluyveromyces marxianus. Bioresour Technol 98:3367–3374

    Article  CAS  Google Scholar 

  • Lin Y, Zhang W, Li C, Sakakibara K, Tanaka S, Kong H (2012) Factors affecting ethanol fermentation using Saccharomyces cerevisiae BY4742. Biomass Bioenergy 47:395–401

    Article  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408

    Article  CAS  Google Scholar 

  • Maeda RN, Barcelos CA, Anna LMMS, Pereira N Jr (2013) Cellulase production by Penicillium funiculosum and its application in the hydrolysis of sugar cane bagasse for second generation ethanol production by fed batch operation. J Biotechnol 163:38–44

    Article  CAS  Google Scholar 

  • Mecozzi M (2005) Estimation of total carbohydrate amount in environmental samples by the phenol–sulphuric acid method assisted by multivariate calibration. Chemom Intell Lab 79:84–90

    Article  CAS  Google Scholar 

  • Mensonides FIC, Brul S, Hellingwerf KJ, Bakker BM, Teixeira de Mattos MJ (2014) A kinetic model of catabolic adaptation and protein reprofiling in Saccharomyces cerevisiae during temperature shifts. FEBS J 281:825–841

    Article  CAS  Google Scholar 

  • Narendranath NV, Power R (2005) Relationship between pH and medium dissolved solids in terms of growth and metabolism of Lactobacilli and Saccharomyces cerevisiae during ethanol production. Appl Environ Microbiol 71:2239–2243

    Article  CAS  Google Scholar 

  • Nuanpeng S, Thanonkeo S, Yamada M, Thanonkeo P (2016) Ethanol production from sweet sorghum juice at high temperatures using a newly isolated thermotolerant yeast Saccharomyces cerevisiae DBKKU Y-53. Energies 9:253

    Article  Google Scholar 

  • Ozmihci S, Kargi F (2007) Effects of feed sugar concentration on continuous ethanol fermentation of cheese whey powder solution (CWP). Enzym Microb Technol 41:876–880

    Article  CAS  Google Scholar 

  • Pereira FB, Guimarães PMR, Teixeira JA, Domingues L (2010) Optimization of low-cost medium for very high gravity ethanol fermentations by Saccharomyces cerevisiae using statistical experimental designs. Bioresour Technol 101:7856–7863

    Article  CAS  Google Scholar 

  • Piper PW (1995) The heat-shock and ethanol stress responses of yeast exhibit extensive similarity and functional overlap. FEMS Microbiol Lett 134:121–127

    Article  CAS  Google Scholar 

  • Pratt-Marshall PL, Bryce JH, Stewart GG (2003) The effects of osmotic pressure and ethanol on yeast viability and morphology. J Inst Brew 109:218–228

    Article  Google Scholar 

  • Soini J, Falschlehner C, Mayer C, Böhm D, Weinel S, Panula J, Vasala A, Neubauer P (2005) Transient increase of ATP as a response to temperature up-shift in Escherichia coli. Microb Cell Fact 4:9

    Article  Google Scholar 

  • Stanley D, Bandara A, Fraser S, Chambers PJ, Stanley GA (2010) The ethanol stress response and ethanol tolerance of Saccharomyces cerevisiae. J Appl Microbiol 109:13–24

    CAS  Google Scholar 

  • Techaparin A, Thanonkeo P, Klanrit P (2017a) High-temperature ethanol production using thermotolerant yeast newly isolated from Greater Mekong Subregion. Braz J Microbiol 48:461–475

    Article  Google Scholar 

  • Techaparin A, Thanonkeo P, Klanrit P (2017b) Gene expression profiles of the thermotolerant yeast Saccharomyces cerevisiae strain KKU-VN8 during high-temperature ethanol fermentation using sweet sorghum juice. Biotechnol Lett 39:1521–1527

    Article  CAS  Google Scholar 

  • ter Schure EG, van Riel AAW, Verrips CT (2000) The role of ammonia metabolism in nitrogen catabolite repression in Saccharomyces cerevisiae. FEMS Microbiol Rev 24:67–83

    Article  Google Scholar 

  • Thomas KC, Hynes SH, Ingledew WM (2002) Influence of medium buffering capacity on inhibition of Saccharomyces cerevisiae growth by acetic and lactic acids. Appl Environ Microbiol 68:1616–1623

    Article  CAS  Google Scholar 

  • Tofighi A, Assadi MM, Asadirad MHA, Karizi SZ (2014) Bio-ethanol production by a novel autochthonous thermo-tolerant yeast isolated from wastewater. J Env Health Sci Eng 12:107

    Article  Google Scholar 

  • Tomkinson AE, Bardwell AJ, Bardwell L, Tappe NJ, Friedberg EC (1993) Yeast DNA repair and recombination proteins Rad1 and Rad10 constitute a single-strand-DNA endonuclease. Nature 362:860–862

    Article  CAS  Google Scholar 

  • Walker GM (1994) The roles of magnesium in biotechnology. Crit Rev Biotechnol 14:311–354

    Article  CAS  Google Scholar 

  • Walker GM (1998) Yeast physiology and biotechnology. Wiley, New York

    Google Scholar 

  • Wang Z, Wei S, Reed SH, Wu X, Svejstrup JQ, Feaver WJ, Kornberg RD, Friedberg EC (1997) The RAD7, RAD10, and RAD23 genes of Saccharomyces cerevisiae: requirement for transcription-independent nucleotide excision repair in vitro and interactions between the gene products. Mol Cell Biol 17:635–643

    Article  CAS  Google Scholar 

  • Yue G, Yu J, Zhang X, Tan T (2012) The influence of nitrogen sources on ethanol production by yeast from concentrated sweet sorghum juice. Biomass Bioenergy 39:48–52

    Article  CAS  Google Scholar 

  • Zoecklein B, Fugelsang KC, Gump B, Nury FS (1995) Wine analysis and production. Springer Science & Business Media, New York

    Book  Google Scholar 

Download references

Acknowledgements

This research was financially supported by the National Research Universities (NRU) Grant Number BiF-2553-Ph.d-01. A portion of this work was also supported by the Fermentation Research Center for Value Added Agricultural Products (FerVAAP).

Author information

Authors and Affiliations

Authors

Contributions

W. Pilap carried out the experiments and analyzed the data. S. Thanonkeo participated in the data analysis of the raw material (SSJ). P. Klanrit contributed to the design of the gene expression analysis and participated in drafting the manuscript. P. Thanonkeo contributed to the design of the experiments, conducted the experiments, analyzed the data and revised the manuscript. All of the authors read, corrected and approved the final manuscript.

Corresponding author

Correspondence to Pornthap Thanonkeo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pilap, W., Thanonkeo, S., Klanrit, P. et al. The potential of the newly isolated thermotolerant Kluyveromyces marxianus for high-temperature ethanol production using sweet sorghum juice. 3 Biotech 8, 126 (2018). https://doi.org/10.1007/s13205-018-1161-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13205-018-1161-y

Keywords

Navigation