Skip to main content
Log in

Construction of chloroplast transformation vector and its functional evaluation in Momordica charantia L.

  • Original Article
  • Published:
3 Biotech Aims and scope Submit manuscript

Abstract

Chloroplast transformation vectors require an expression cassette flanked by homologous plastid sequences to drive plastome recombination. The rrn16-rrn23 plastome region was selected and using this region, a new species-specific plastid transformation vector CuIA was developed with pKS+II as a backbone by inserting the rrn16-trnI and trnA-rrn23 sequences from Cucumis sativus L. An independent expression cassette with aadA gene encoding aminoglycoside 3′-adenylyltransferase with psbA controlling elements is added into the trnI-trnA intergenic region that confers resistance to spectinomycin. An efficient plastid transformation in bitter melon (Momordica charantia L.) was achieved by bombardment of petiole segments. The frequency of transplastomic plants yielded using standardized biolistic parameters with CuIA vector was two per 15 bombarded plates, each containing 20 petiole explants. Integration of aadA gene was verified by PCR analysis in transplastomes. Transplastomic technology developed may be a novel approach for high level expression of pharmaceutical traits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bock R (2014) Engineering plastid genomes: methods, tools and applications in basic research and biotechnology. Annu Rev Plant Biol 66:211–241

    Article  Google Scholar 

  • Carrer H, Hockenberry TN, Svab Z, Maliga P (1993) Kanamycin resistance as a selectable marker for plastid transformation in tobacco. Mol Gen Genet 241:49–56

    Article  CAS  Google Scholar 

  • Cheng L, Li HP, Qu B, Huang T, Tu JX, Fu TD, Liao YC (2010) Chloroplast transformation of rapeseed (Brassica napus L.) by particle bombardment of cotyledons. Plant Cell Rep 29:371–381

    Article  CAS  Google Scholar 

  • Clarke JL, Daniell H (2011) Plastid biotechnology for crop production: present status and future perspectives. Plant Mol Biol 76:211–220

    Article  CAS  Google Scholar 

  • Cosa BD, Moar W, Lee SB, Miller M, Daniell H (2001) Overexpression of the Bt cry2Aa2 operon in chloroplasts leads to formation of insecticidal crystals. Nat Biotechnol 19:71–74

    Article  Google Scholar 

  • Daniell H, Lee SB, Grevich J, Saski C, Quesada-Vargas T, Guda C, Tomkins J, Jansen RK (2006) Complete chloroplast genome sequences of Solanum bulbocastanum, Solanum lycopersicum and comparative analyses with other Solanaceae genomes. Theor Appl Genet 112:1503–1518

    Article  CAS  Google Scholar 

  • DeGray G, Rajasekaran K, Smith F, Sanford J, Daniell H (2001) Expression of an antimicrobial peptide via the chloroplast genome to control phytopathogenic bacteria and fungi. Plant Physiol 127:852–862

    Article  CAS  Google Scholar 

  • Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure from small quantities of fresh leaf tissues. Phytochem Bull 19:11–15

    Google Scholar 

  • Goldschmidt-Clermont M (1991) Transgenic expression of aminoglycoside adenine transferase in the chloroplast: a selectable marker for site-directed transformation of chlamydomonas. Nucl Acids Res 19:4083–4089

    Article  CAS  Google Scholar 

  • Grover JK, Yadav SP (2004) Pharmacological actions and potential uses of Momordica charantia: a review. J Ethnopharmacol 93:123–132

    Article  CAS  Google Scholar 

  • Hou BK, Zhou YH, Wan LH, Zhang ZL, Shen GF, Chen ZH, Hu ZM (2003) Plastid transformation in oilseed rape. Transgenic Res 12:111–114

    Article  CAS  Google Scholar 

  • Iamtham S, Day A (2000) Removal of antibiotic resistance genes from transgenic tobacco plastids. Nat Biotechnol 18:1172–1176

    Article  CAS  Google Scholar 

  • Kim JS, Jung JD, Lee JA, Park HW, Oh KH, Jeong WJ, Choi DW, Liu JR, Cho KY (2006) Complete sequence and organization of the cucumber (Cucumis sativus L. cv. Baekmibaekdadagi) chloroplast genome. Plant Cell Rep 25:334–340

    Article  CAS  Google Scholar 

  • Kanamoto H, Yamashita A, Asao H, Okumura S, Takase H, Hattori M, Yokota A, Tomizawa KI (2006) Efficient and stable transformation of Lactuca sativa L. cv. cisco (lettuce) plastids. Transgenic Res 15:205–217

    Article  CAS  Google Scholar 

  • Kavanagh TA, Thanh ND, Lao NT, McGrath N, Peter SO, Horváth EM, Dix PJ, Medgyesy P (1999) Homeologous plastid DNA transformation in tobacco is mediated by multiple recombination events. Genetics 152:1111–1122

    CAS  Google Scholar 

  • Khan MS, Maliga P (1999) Fluorescent antibiotic resistance marker for tracking plastid transformation in higher plants. Nat Biotechnol 17:910–915

    Article  CAS  Google Scholar 

  • Lee SM, Kang K, Chung H, Yoo SH, Xu XM, Lee SB, Cheong JJ, Daniell H, Kim M (2006) Plastid transformation in the monocotyledonous cereal crop, rice (Oryza sativa) and transmission of transgenes to their progeny. Mol Cells 21:401–410

    CAS  Google Scholar 

  • López-Ochoa LA, Apolinar-Hernández MM, Peña-Ramírez YJ (2015) Characterization of chloroplast region rrn16-rrn23S from the tropical timber tree Cedrela odorata L. and de novo construction of a transplastomic expression vector suitable for Meliaceae trees and other economically important crops. Genet Mol Res 14:1469–1478

    Article  Google Scholar 

  • Lugo SK, Kunnimalaiyaan M, Singh NK, Nielsen BL (2004) Required sequence elements for chloroplast DNA replication activity in vitro and in electroporated chloroplasts. Plant Sci 166(1):151–161

    Article  CAS  Google Scholar 

  • Maliga P (2004) Plastid transformation in higher plants. Annu Rev Plant Biol 55:289–313

    Article  CAS  Google Scholar 

  • Maliga P, Bock R (2011) Plastid biotechnology: food, fuel and medicine for the 21st century. Plant Physiol 155:1501–1510

    Article  CAS  Google Scholar 

  • Muralikrishna N, Srinivas K, BharathKumar K, Sadanandam A (2016) Stable plastid transformation in Scoparia dulcis L. Physiol Mol Biol Plants 22:575–581

    Article  CAS  Google Scholar 

  • Muralikrishna N, Raghu E, Srinivas K, Bharathkumar K, Yashodhara V, Sadanandam A (2018) Efficient genetic transformation of Momordica charantia L. by microprojectile bombardment. 3. Biotech 8:1–8

    Google Scholar 

  • Rao AV, Krishna NM, Raghu E, Sadanandam A (2013) Genetic engineering of fruit rot disease resistance in Capsicum annuum L. using defensin gene (TvD1) through stable plastid transformation. In Vitro Cell Dev Biol. https://doi.org/10.1007/s11626-013-9614-4

    Google Scholar 

  • Ruf S, Hermann M, Berger IJ, Carrer H, Bock R (2001) Stable genetic transformation of tomato plastids and expression of a foreign protein in fruit. Nat Biotechnol 19:870–875

    Article  CAS  Google Scholar 

  • Ruhlman T, Verma D, Samson N, Daniell H (2010) The role of heterologous chloroplast sequence elements in transgene integration and expression. Plant Physiol 152:2088–2104

    Article  CAS  Google Scholar 

  • Serino G, Maliga P (1997) A negative selection scheme based on the expression of cytosine deaminase in plastids. Plant J 12:697–701

    Article  CAS  Google Scholar 

  • Sidorov VA, Kasten D, Pang SZ, Hajdukiewicz PTJ, Staub JM, Nehra NS (1999) Stable plastid transformation in potato: use of green fluorescent protein as a plastid marker. Plant J 19:209–216

    Article  CAS  Google Scholar 

  • Sikdar SR, Serino G, Chaudhuri S, Maliga P (1998) Plastid transformation in Arabidopsis thaliana. Plant Cell Rep 18:20–24

    Article  CAS  Google Scholar 

  • Sikdar B, Shafiullah M, Chowdhury AR, Sharmin N, Naha S, Joarder OI (2005) Agrobacterium-mediated GUS expression in bitter gourd (Momordica charantia L.). Biotechnology 4:149–152

    Article  CAS  Google Scholar 

  • Skarjinskaia M, Svab Z, Maliga P (2003) Plastid transformation in Lesquerella Fendleri, an oilseed brassicacea. Transgenic Res 12:115–122

    Article  CAS  Google Scholar 

  • Staub JM, Maliga P (1995) Expression of a chimeric uidA gene indicates that polycistronic mRNAs are efficiently translated in tobacco plastids. Plant J 7:845–848

    Article  CAS  Google Scholar 

  • Svab Z, Maliga P (1993) High-frequency plastid transformation in tobacco by selection for a chimeric aadA gene. Proc Natl Acad Sci USA 90:913–917

    Article  CAS  Google Scholar 

  • Svab Z, Hajdukiewicz P, Maliga P (1990) Stable transformation of plastids in higher plants. Proc Natl Acad Sci USA 87:8526–8530

    Article  CAS  Google Scholar 

  • Thiruvengadam M, Praveen N, Chung IM (2012) An efficient Agrobacterium tumefaciens -mediated genetic transformation of bitter melon (Momordica charantia L.). AJCS 6:1094–1100

    CAS  Google Scholar 

  • Verma D, Daniell H (2007) Chloroplast vector systems for biotechnology applications. Plant Physiol 145:1129–1143

    Article  CAS  Google Scholar 

  • Wang HH, Yin WB, Hu ZM (2009) Advances in chloroplast engineering. J Genet Genomics 36:387–398

    Article  CAS  Google Scholar 

  • Yashodhara V, Muralikrishna N, Raghu E, Bharathkumar K, Rathnaprabha D, Sadanandam A (2016) In vitro plant regeneration from petiole explants and assessment of genetic fidelity using ISSR markers in Momordica charantia L. PCBMB 17:49–56

    Google Scholar 

  • Ye GN, Hajdukiewicz P, Broyles D, Rodriguez D, Xu CW, Nehra N, Staub JM (2001) Plastid-expressed 5-enolpyruvylshikimate 3phosphate synthase genes provide high level glyphosate tolerance in tobacco. Plant J 25:261–270

    Article  CAS  Google Scholar 

Download references

Acknowledgements

MK would like to acknowledge the financial assistance provided by the Department of Science and Technology -INSPIRE (DST/INSPIRE Fellowship/2011/426), New Delhi. AS is grateful to UGC for BSR-Faculty Fellowship. The authors are also thankful to UGC, New Delhi for financial support under SAP-DRS phase-II to the Department of Biotechnology, Kakatiya University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sadanandam Abbagani.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Narra, M., Kota, S., Velivela, Y. et al. Construction of chloroplast transformation vector and its functional evaluation in Momordica charantia L.. 3 Biotech 8, 140 (2018). https://doi.org/10.1007/s13205-018-1160-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13205-018-1160-z

Keywords

Navigation