Advertisement

3 Biotech

, 8:139 | Cite as

Simple isolation and characterization of seminal plasma extracellular vesicle and its total RNA in an academic lab

  • Nalini Eswaran
  • Vickram Agaram Sundaram
  • Kamini Arvind Rao
  • Sridharan Thalaivarisai Balasundaram
Short Reports

Abstract

Extracellular vesicles (EVs) are small membrane-bound sacs, identified in many body fluids of humans. Standard extracellular vesicle separation methods such as differential and ultracentrifugation are very expensive, not affordable in academic labs. So, the current research tried to isolate seminal plasma EVs using polyethylene glycol (PEG) precipitation process. Normospermia semen from “Milann - The Fertility Center” processed to isolate EVs by PEG method. Nanodrop spectrophotometer showed presence of EVs by indirectly measuring protein content of precipitated EVs. EVs isolated by PEG precipitation showed a wide size range from 30 to 1000 nm with Z average of 75.4 nm and a PI of 0.464, whereas ultracentrifuge sample showed size range of 60–1000 nm with Z average of 501.3 nm with a PI of 0.692. Edax analysis also showed good elemental pattern. Total RNA extraction from PEG EVs analysed with nanodrop spectrophotometer, showed presence of RNA content in varying concentrations obtained from different ratios in nanograms. Thus, the current study concludes that seminal plasma EVs isolated by PEG precipitation is simple, reproducible and non-sensitive to carry out at academic labs.

Keywords

Normospermia Polyethylene glycol method Infertility Motility of sperm Scanning electron microscope 

Notes

Acknowledgements

Authors are thankful to the management of VIT University and Milann - The Fertility Center, for providing the best infrastructure to work.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

13205_2018_1157_MOESM1_ESM.doc (162 kb)
Supplementary material 1 (DOC 162 kb)
13205_2018_1157_MOESM2_ESM.docx (27 kb)
Supplementary material 2 (DOCX 26 kb)

References

  1. Andersson E, Sørensen OE, Frohm B, Borregaard N, Egesten Malm J (2002) Isolation of human cationic antimicrobial protein-18 from seminal plasma and its association with prostasomes. Hum Reprod 17(10):2529–2534CrossRefGoogle Scholar
  2. Andreu Z, Rivas E, Sanguino-Pascual A, Lamana A, Marazuela M, González- Alvaro I, Sánchez-Madrid F, de la Fuente H, Yáñez-Mó M (2016) Comparative analysis of EV isolation procedures for miRNAs detection in serum samples. J Extracell Vesicles 5(1):31655CrossRefGoogle Scholar
  3. Chernyshev VS, Rachamadugu R, Tseng YH, Belnap DM, Jia Y, Branch KJ, Butterfield AE, Pease LF, Bernard PS, Skliar M (2015) Size and shape characterization of hydrated and desiccated exosomes. Anal Bioanal Chem 407(12):3285–3301CrossRefGoogle Scholar
  4. Cooper TG, Noonan E, Von Eckardstein S, Auger J, Baker HG, Behre HM, Haugen TB, Kruger T, Wang C, Mbizvo MT, Vogelsong KM (2009) World Health Organization reference values for human semen characteristics. Hum Reprod Update 16(3):231–245CrossRefGoogle Scholar
  5. Fernández JA, Heeb MJ, Radtke KP, Griffin JH (1997) Potent blood coagulant activity of human semen due to prostasome-bound tissue factor. Biol Reprod 56(3):757–763CrossRefGoogle Scholar
  6. Hoog JL, Lötvall J (2015) Diversity of extracellular vesicles in human ejaculates revealed by cryo-electron microscopy. J Extracell Vesicles 4(1):28680.  https://doi.org/10.3402/jev.v4.28680
  7. Johansson HO, Karlström G, Tjerneld F, Haynes CA (1998) Driving forces for phase separation and partitioning in aqueous two-phase systems. J Chromatogr B 711(1):3–17CrossRefGoogle Scholar
  8. Lázaro Ibanez E, Lunavat TR, Jang S, Escobedo-Lucea C, Oliver-De La Cruz J, Siljander P, Lötvall J, Yliperttula M (2017) Distinct prostate cancer-related mRNA cargo in extracellular vesicle subsets from prostate cell lines. BMC Cancer 17(1):92CrossRefGoogle Scholar
  9. Madison MN, Roller RJ, Okeoma CM (2014) Human semen contains exosomes with potent anti-HIV-1 activity. Retrovirology 11(1):102CrossRefGoogle Scholar
  10. Mihelich BL, Nonn L (2012) Exosomal miRNAs contribute to prostatic zinc homeostasis. Cancer Res 72(8):128CrossRefGoogle Scholar
  11. Mogielnicka Brzozowska M, Strzeżek R, Wasilewska K, Kordan W (2015) Prostasomes of canine seminal plasma-zinc binding ability and effects on motility characteristics and plasma membrane integrity of spermatozoa. Reprod Domest Anim 50(3):484–491CrossRefGoogle Scholar
  12. Park KH, Kim BJ, Kang J, Nam TS, Lim JM, Kim HT, Park JK, Kim YG, Chae SW, Kim UH (2011) Ca2+ signaling tools acquired from prostasomes are required for progesterone-induced sperm motility. Sci Signal 4(173):31CrossRefGoogle Scholar
  13. Rider MA, Hurwitz SN, Meckes DG Jr (2016) ExtraPEG: a polyethylene glycol-based method for enrichment of extracellular vesicles. Sci Rep 6:23978CrossRefGoogle Scholar
  14. Sharma S, Gillespie BM, Palanisamy V, Gimzewski JK (2011) Quantitative nanostructural and single-molecule force spectroscopy biomolecular analysis of human-saliva-derived exosomes. Langmuir 27(23):14394–14400CrossRefGoogle Scholar
  15. Tarazona R, Delgado E, Guarnizo MC, Roncero RG, Morgado S, Sanchez-Correa B, Gordillo JJ, Dejulian J, Casado JG (2011) Human prostasomes express CD48 and interfere with NK cell function. Immunobiology 216(1):41–46CrossRefGoogle Scholar
  16. Tavoosidana G, Ronquist G, Darmanis S, Yan J, Carlsson L, Wu D, Conze T, Ek P, Semjonow A, Eltze E, Larsson A (2011) Multiple recognition assay reveals prostasomes as promising plasma biomarkers for prostate cancer. Proc Natl Acad Sci USA 108(21):8809–8814CrossRefGoogle Scholar
  17. Thery C, Amigorena S, Raposo G, Clayton A (2006) Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Curr Protoc Cell Biol.  https://doi.org/10.1002/0471143030.cb0322s30 Google Scholar
  18. Vivacqua A, Siciliano L, Sabato M, Palma A, Carpino A (2004) Prostasomes as zinc ligands in human seminal plasma. Int J Androl 27(1):27–31CrossRefGoogle Scholar
  19. Vlassov A, Li M, Zeringer E, Conrad R (2016) Methods and compositions for exosome isolation. U.S. Patent 9,347,087. Life Technologies CorporationGoogle Scholar
  20. Vojtech L, Woo S, Hughes S, Levy C, Ballweber L, Sauteraud RP, Strobl J, Westerberg K, Gottardo R, Tewari M, Hladik F (2014) Exosomes in human semen carry a distinctive repertoire of small non-coding RNAs with potential regulatory functions. Nucleic Acids Res 42(11):7290–7304CrossRefGoogle Scholar
  21. Yanez-Mo M, Siljander PRM, Andreu Z, Zavec AB, Borràs FE, Buzas EI, Buzas K, Casal E, Cappello F, Carvalho J, Colás E (2015) Biological properties of extracellular vesicles and their physiological functions. J Extracell Vesicles.  https://doi.org/10.3402/jev.v4.27066 Google Scholar
  22. Zhao J, Dong X, Hu X, Long Z, Wang L, Liu Q, Sun B, Wang Q, Wu Q, Li L (2016) Zinc levels in seminal plasma and their correlation with male infertility: a systematic review and meta-analysis. Sci Rep.  https://doi.org/10.1038/srep22386 Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Nalini Eswaran
    • 1
  • Vickram Agaram Sundaram
    • 2
  • Kamini Arvind Rao
    • 3
  • Sridharan Thalaivarisai Balasundaram
    • 1
  1. 1.School of BioSciences and TechnologyVIT UniversityVelloreIndia
  2. 2.DST-SERB, Govt. of India, School of BioSciences and TechnologyVIT UniversityVelloreIndia
  3. 3.Milann - The Fertility CenterBangaloreIndia

Personalised recommendations