3 Biotech

, 8:122 | Cite as

Effect of Bacillus pumilus CCIBP-C5 on MusaPseudocercospora fijiensis interaction

  • Mileidy Cruz-Martín
  • Mayra Acosta-Suárez
  • Eilyn Mena
  • Berkis Roque
  • Tatiana Pichardo
  • Yelenys Alvarado-Capó
Original Article


The effect of antifungal activity of culture filtrate (CF) of Bacillus pumilus strain CCIBP-C5, an isolate from a phyllosphere of banana (Musa) leaves, was determined on Pseudocercospora fijiensis challenged banana plants. The CF was shown to decrease the fungal biomass and induce changes in banana plant. In this sense, at 70 days post inoculation (dpi), a lower infection index as well as a decrease in fungal biomass after 6 dpi was obtained in treated plants with respect to control ones. At the same time, changes in the activities of several enzymes related to plant defense responses, such as phenylalanine ammonia lyase, chitinases, β-1,3-glucanases and peroxidases were observed. These results indicate that B. pumilus CCIBP-C5 has a potential role for biological control of P. fijiensis possibly due to the production of antifungal metabolites.


Bacillus pumilus Black Sigatoka Biological control Culture filtrate 



We thanks PhD. Roberto Vázquez and Miguel Tzec who helped develop the qPCR assays. The authors are also grateful to PhD Milady Mendoza and Mairenys Concepción for their comments and revisions of the manuscript. Partial financial support for this work was an output of a scholarship from the Food Security Center from the University of Hohenheim, which is part of the DAAD (German Academic Exchange Service) program “exceed” and in cooperation with the host PhD Blondy Canto Canché at the Centro de Investigación Científica de Yucatán (CICY), México.

Compliance with ethical standards

Conflict of interest

The authors declare that they do not have conflict of opposing view of concern.

Ethical standard

This article does not contain any researches with human or animals have acted of any of the authors.


  1. Almagro L, Gómez Ros LV, Belchi-Navarro S, Bru R, Ros Barceló A, Pedreño MA (2008) Class III peroxidases in plant defence reactions. J Exp Bot 60:377–390CrossRefGoogle Scholar
  2. Alvarado-Capó Y, Leiva-Mora M, Rodríguez MA, Acosta-Suárez M, Cruz-Martín M, Portal O, Kosky RG, García L, Bermúdez I, Padrón J (2003) Early evaluation of Black leaf streak resistance by using mycelial suspensión of Mycosphaerella fijiensis. In: Jacome L, Lepoivre P, Martin D, Ortiz R, Romero R, Escalante JV (eds) Mycosphaerella leaf spot diseases of bananas: present status and outlook. INIBAP, Montpellier, pp 169–175Google Scholar
  3. Arzanlou M, Abeln EC, Kema GH, Waalwijk C, Carlier J, de Vries I (2007) Molecular diagnostics for the Sigatoka disease complex of banana. Phytopathology 97(9):1112–1118CrossRefGoogle Scholar
  4. Beric T, Kojic M, Stankovic S, Topisirovic L, Degrassi G, Myers M, Venturi V, Fira D (2012) Antimicrobial activity of Bacillus sp. natural isolates and their potential use in the biocontrol of phytopathogenic bacteria. Food Technol. Biotechnol 50(1):25–31Google Scholar
  5. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding. Anal Biochem 72:248–254CrossRefGoogle Scholar
  6. Cakmak I, Strboe D, Marschner H (1993) Activities of hydrogen peroxides scavenging enzymes in germinating wheat seeds. J Exp Bot 44:127–132CrossRefGoogle Scholar
  7. Carlier J, De Waele D, Escalant JV (2002) Global evaluation of Musa germplasm for resistance to Fusarium wilt, Mycosphaerella leaf spot diseases, and nematodes: In-depth evaluation. In: Vezina A, Picq C (eds) INIBAP technical guidelines, vol 6. INIBAP, Montpellier, pp 37–48Google Scholar
  8. Castaño Zapata J (2006) Evaluación in vitro de extractos vegetales sobre Mycosphaerella fijiensis Morelet. Agronomía 14:37–50Google Scholar
  9. Castro O, Bach E (2004) Increased production of β-1,3 glucanase and proteins in Bipolaris sorokiniana pathosystem treated using commercial xanthan gum. Plant Physiol Biochem 42:165–169CrossRefGoogle Scholar
  10. Caverzan A, Passaia G, Barcellos S, Werner C, Lazzarotto F, Margis-Pinheiro M (2012) Plant responses to stresses: role of ascorbate peroxidase in the antioxidant protection. Genet Mol Biol 35(4):1011–1019CrossRefGoogle Scholar
  11. Cawoy H, Bettiol W, Fickers P, Ongena M (2011) Bacillus-based biological control and plant diseases. In: Stoytcheva M (ed) Pesticides in the modern world-pesticides use and management. InTech Europe, Rijeka, pp 273–303Google Scholar
  12. Ceballos I, Mosquera S, Angulo M, Mira J, Argel L, Uribe-Velez D, Romero-Tabarez M, Orduz-Peralta S, Villegas V (2012) Cultivable bacteria populations associated with leaves of banana and plantain plants and their antagonistic activity against Mycosphaerella fijiensis. Microb Ecol 64:641–653CrossRefGoogle Scholar
  13. Chowdappa P, Mohan Kumar SP, Jyothi M, Upreti KK (2013) Growth stimulation and induction of systemic resistance in tomato against early and late blight by Bacillus subtilis OTPB1 or Trichoderma harzianum OTPB3. Biol Control 65:109–117CrossRefGoogle Scholar
  14. Chowdhury SP, Uhl J, Grosch R, Alqueres S, Pittroff S, Dietel K, Schmitt-Kopplinn P, Borriss R, Hartmann A (2015) Cyclic lipopeptides of Bacillus amyloliquefaciens subsp. plantarum colonizing the lettuce rhizosphere enhance plant defence responses towards the bottom rot pathogen Rhizoctonia solani. Mol Plant Microb Interact 28:17–18CrossRefGoogle Scholar
  15. Churchill A (2011) Mycosphaerella fijiensis, the black leaf streak pathogen of banana: progress towards understanding pathogen biology and detection, disease development, and the challenges of control. Mol Plant Pathol 12:307–328CrossRefGoogle Scholar
  16. Compant S, Duffy B, Nowak J, Clément C, Barka E (2005) Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Appl and Environ Microbiol 71(9):4951–4959. CrossRefGoogle Scholar
  17. Cruz-Martín M, Acosta-Suárez M, Poveda I, Leiva-Mora L, Roque B, Alvarado-Capó Y (2012) Actividad antifúngica in vitro de bacterias frente a Mycosphaerella fijiensis mediada por metabolitos difundidos y volátiles. Biotecnología Vegetal 12(3):179–182Google Scholar
  18. Cruz-Martín M, Acosta-Suárez M, Roque B, Pichardo T, Castro R, Alvarado-Capó Y (2016) Diversidad de cepas bacterianas de la filosfera de Musa spp. con actividad antifúngica frente a Mycosphaerella fijiensis Morelet. Biotecnología Vegetal 16(1):53–61Google Scholar
  19. Cruz-Martín M, Acosta-Suárez M, Mena E, Roque B, Pichardo T, Alvarado-Capó Y (2017) Antifungal activity of Musa phyllosphere Bacillus pumilus strain against Mycosphaerella fijiensis Morelet. Trop Plant Pathol 42(2):121–125. CrossRefGoogle Scholar
  20. Desoignies N, Schramme F, Ongena M, Legrève A (2013) Systemic resistance induced by Bacillus lipopeptides in Beta vulgaris reduces infection by the rhizomania disease vector Polymyxa betae. Mol Plant Pathol 14:416–421CrossRefGoogle Scholar
  21. Ehsani-Moghaddam B, Charles MT, Carisse O, Khanizadeh Sh (2006) Superoxide dismutase responses of strawberry cultivars to infection by Mycosphaerella fragariae. J Plant Physiol 163:147–153CrossRefGoogle Scholar
  22. Falardeau J, Wise C, Novitsky L, Avis TJ (2013) Ecological and mechanistic insights into the direct and indirect antimicrobial properties of Bacillus subtilis lipopeptides on plant pathogens. J Chem Ecol 39:869–878CrossRefGoogle Scholar
  23. Ferreira RB, Monteiro S, Freitas R, Santos CN, Chen Z, Batista LM, Duarte J, Borges A, Teixeira AR (2007) The role of plant defence proteins in fungal pathogenesis. Mol Plant Pathol 8(5):677–700CrossRefGoogle Scholar
  24. Fischer SE, Jofré EC, Cordero PV, Gutiérrez-Manero FJ, Mori GB (2010) Survival of native Pseudomonas in soil and wheat rhizosphere and antagonist activity against plant pathogenic fungi. Antonie Van Leeuwenhoek 97:241–251CrossRefGoogle Scholar
  25. Fu G, Huang S, Ye Y, Wu Y, Cen Z, Lin S (2010) Characterization of a bacterial biocontrol strain B106 and its efficacy in controlling banana leaf spot and post-harvest anthracnose diseases. Biol Control 55:1–10CrossRefGoogle Scholar
  26. Furuya S, Mochizuki M, Aoki Y, Kobayashi H, Takayanagi T, Shimizu M, Suzuki S (2011) Isolation and characterization of Bacillus subtilis KS1 for the biocontrol of grapevine fungal diseases. Biocontrol Sci Technol 21:705–720CrossRefGoogle Scholar
  27. García-Gutiérrez L, Zeriouh H, Romero D, Cubero J, de Vicente A, Pérez-García A (2013) The antagonistic strain Bacillus subtilis UMAF6639 also confers protection to melon plants against cucurbit powdery mildew by activation of jasmonate and salicylic acid dependent defence responses. Microbial Biotechnol 6:264–274CrossRefGoogle Scholar
  28. González R, Bustamante E, Shannon P (1996) Evaluación de microorganismos quitinolíticos en el control de la Sigatoka negra (Mycosphaerella fijiensis) en banano. Manejo Integrado Plagas 40:12–16Google Scholar
  29. Gutierrez-Monsalve JA, Mosquera S, González-Jaramillo LM, Mira JJ, Villegas-Escobar V (2015) Effective control of black Sigatoka disease using a microbial fungicide based on Bacillus subtilis EA-CB0015 culture. Biol Control 87:39–46CrossRefGoogle Scholar
  30. Guzmán M, Orozco-Santos M, Pérez-Vicente L (2013) Sigatoka leaf spot diseases of bananas: dispersion, impact and evolution of management strategies in Latin American-Caribbean region. XX Reunião Internacional da Associação para a Cooperação em Pesquisa e Desenvolvimento Integral das Musáceas (Bananas e Plátanos) 9 a 13 de setembro. Acorbat. Brasil. Fortaleza, CEGoogle Scholar
  31. Hammerschmidt R (2007) Introduction: definitions and some history. In: Walters D, Newton A, Lyon G (eds.) Induced resistance for plant defence, Chapter 1. Blackwell, pp 1–9. ISBN: 978-1-4051-3447-7Google Scholar
  32. Hariprasad P, Divakara ST, Niranjana SR (2011) Isolation and characterization of chitinolytic rhizobacteria for the management of Fusarium wilt in tomato. Crop Prot 30:1606–1612CrossRefGoogle Scholar
  33. Hinarejos E, Castellano M, Rodrigo I, Belles JM, Conejero V, Lopez-Gresa MP, Lisón P (2016) Bacillus subtilis IAB/BS03 as a potential biological control agent. Eur J Plant Pathol 146:597–608CrossRefGoogle Scholar
  34. Jain A, Singh A, Singh S, Singh V, Singh HB (2015) Comparative proteomic analysis in pea treated with microbial consortia of beneficial microbes reveals changes in the protein network to enhance resistance against Sclerotinia sclerotiorum. J Plant Physiol 182:79–94CrossRefGoogle Scholar
  35. Jiménez J, Moreno LP, Magnitskiy S (2012) Respuesta de las plantas a estrés por inundación. Una revisión. Revista Colombiana de Ciencias Hortícolas 6(1):96–109CrossRefGoogle Scholar
  36. Johanson LH, Jeger MJ (1993) Use of PCR for detection of Mycosphaerella fijiensis and musicola, the causal agents of Sigatoka leaf spots in banana and plantain. Mycol Res 97:670–674CrossRefGoogle Scholar
  37. Jourdan E, Henry G, Duby F, Dommes J, Barthelemy JP, Thonart P, Ongena M (2009) Insights into the defense related events occurring in plant cells following perception of surfactin-type lipopeptide from Bacillus subtilis. Mol Plant Microbe Interact 22:456–468CrossRefGoogle Scholar
  38. Kang SM, Radhakrishnan R, Lee IJ (2015) Bacillus amyloliquefaciens subsp. plantarum GR53, a potent biocontrol agent resists Rhizoctonia disease on Chinese cabbage through hormonal and antioxidants regulation. World J Microbiol Biotechnol 31:1517–1527CrossRefGoogle Scholar
  39. Kloepper JW, Ryu CM (2006) Bacterial endophytes as elicitors of induced systemic resistance. In: Schulz B, Boyle C, Sieber TN (eds) Microbial root endophytes. Springer, Berlin, pp 33–52CrossRefGoogle Scholar
  40. Kloepper JW, Ryu CM, Zhang S (2004) Induced systemic resistance and promotion of plant growth by Bacillus spp. Phytopathology 94:1259–1266CrossRefGoogle Scholar
  41. Leiva-Mora M, Alvarado-Capó Y, Acosta-Suárez M, Cruz-Martín M, Sánchez-García C, Roque B (2010) Protocolo para la inoculación artificial de plantas de Musa spp. con Mycosphaerella fijiensis y evaluación de su respuesta mediante variables epifitiológicas y componentes de la resistencia. Biotecnología Vegetal 10(2):79–88Google Scholar
  42. Malfanova N, Frazil L, Lugtenberg B, Chebotar V, Ongena M (2012) Cyclic lipopeptide profile of the plant-beneficial endophytic bacterium Bacillus subtilis HC8. Arch Microbiol 194:893–899CrossRefGoogle Scholar
  43. Marcano IE, Díaz-Alcántara C, Seco V, Urbano B, González-Andrés F (2016) Explain the reduction in the incidence of black Sigatoka (Mycosphaerella fijiensis) in banana plants inoculated with bacteria isolated from banana tree roots in the Dominican Republic. In: González-Andrés F, James E (eds) Biological nitrogen fixation and beneficial plant–microbe interactions. Springer, Cham, pp 155–170. CrossRefGoogle Scholar
  44. Mena E, Cruz-Martín M, Acosta-Suárez M, Roque B, Pichardo T, Alvarado-Capó Y (2015) Respuesta histoquímica de plantas de banano cv. ‘Grande naine’ inoculadas con Mycosphaerella fijiensis y filtrado de cultivo de Bacillus pumilus CCIBP-C5. Biotecnología Vegetal 15(2):97–103Google Scholar
  45. Murray M, Thompson WF (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res 8(19):4321–4325CrossRefGoogle Scholar
  46. Nakano Y, Asada K (1987) Purification of ascorbate peroxidase in spinach chloroplasts: its inactivation in ascorbate-depleted medium and reactivation by monodehydroascorbate radical. Plant Cell Physiol 28:131–140Google Scholar
  47. Narendra-Babu A, Jogaiah S, Ito SI, Kestur-Nagaraj A, Tran LSP (2015) Improvement of growth, fruit weight and early blight disease protection of tomato plants by rhizosphere bacteria is correlated with their beneficial traits and induced biosynthesis of antioxidant peroxidase and polyphenol oxidase. Plant Sci 231:62–73CrossRefGoogle Scholar
  48. Ongena M, Jacques P (2008) Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends Microbiol 16:115–125CrossRefGoogle Scholar
  49. Ongena M, Duby F, Jourdan E, Beaudry T, Jadin V, Dommes J, Thonart P (2005) Bacillus subtilis M4 decrease plant susceptibility towards fungal pathogens by increasing host resistance associated with differential gene expression. Appl Microbiol Biotechnol 67(5):692–698CrossRefGoogle Scholar
  50. Ongena M, Jourdan E, Adam A, Paquot M, Brans A, Joris B (2007) Surfactin and fengycin lipopeptidesof Bacillus subtilis as elicitors of induced systemic resistance in plants. Environ Microbiol 9:1084–1090CrossRefGoogle Scholar
  51. Orellana P (1994) Tecnología para la micropropagación in vitro de clones de Musa spp. Tesis para aspirar por el grado científico de doctor en Ciencias Agrícolas. UCLV, IBP, Santa Clara, CubaGoogle Scholar
  52. Pan SQ, Ye XS, Kuc J (1991) Association of β-1,3 glucanase activity and isoform pattern with systemic resistance to blue mold in tobacco induced by stem injection with Peronospora tabacina or leaf inoculation with tobacco mosaic virus. Physiol Mol Plant Pathol 39:25–39CrossRefGoogle Scholar
  53. Pereira de Melo F, Fiore M, de Moraes L, Silva-Stenico M, Scramin S, Teixeira M, de Melo I (2009) Antifungal compound produced by the Cassava endophyte Bacillus pumilus MAIIIM4A. Sci Agric 66(5):583–592CrossRefGoogle Scholar
  54. Perez-Garcia A, Romero D, de Vicente A (2011) Plant protection and growth stimulation by microorganisms: biotechnological applications of Bacilli in agriculture. Curr Opin Biotechnol 22:187–193. CrossRefGoogle Scholar
  55. Radhakrishnan R, Hashem A, Abd Allah EF (2017) Bacillus: a biological tool for crop improvement through bio-molecular changes in adverse environments. Front Physiol 8:667CrossRefGoogle Scholar
  56. Rahman A, Uddin W, Wenner NG (2015) Induced systemic resistance responses in perennial ryegrass against Magnaporthe oryzae elicited by semi-purified surfactin lipopeptides and live cells of Bacillus amyloliquefaciens. Mol Plant Pathol 16:546–558CrossRefGoogle Scholar
  57. Rose JK, Kyung-Sik H, Darvill A, Albersheim P (2002) Molecular cloning and characterization of glucanase inhibitor proteins: coevolution of a counter defense mechanism by plant patogens. Plant Cell 14:1329–1345CrossRefGoogle Scholar
  58. Ross WW, Sederoff RR (1992) Phenilalanine ammnia-lyase from loblolly pine: purification of the enzyme and isolation of complementary DNA clone. Plant Physiol 98:380–386CrossRefGoogle Scholar
  59. Sánchez-García C, Alvarado-Capó Y, Cruz-Martín M, Acosta-Suárez M, Leiva-Mora M, Roque B (2010) Detección de compuestos bioquímicos relacionados con la respuesta defensiva en plantas de Musa spp. inoculadas artificialmente con Mycosphaerella fijiensis. Biotecnología Vegetal 10(2):89–97Google Scholar
  60. Sgarbi E, Fornasiero RB, Lins AP, Bonatti PM (2003) Phenol metabolism is differentially affected by ozone in two cell lines from grape (Vitis vinifera L.) leaf. Plant Sci 165:951–957CrossRefGoogle Scholar
  61. Sharma P, Bhushan A, Shanker R, Pessarakli M (2012) Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J Bot. Google Scholar
  62. Shigeoka S, Ishikawa T, Tamoi M, Miyagawa Y, Takeda T, Yabuta Y, Yoshimura K (2002) Regulation and function of ascorbate peroxidase isoenzymes. J Exp Bot 53:1305–1319CrossRefGoogle Scholar
  63. Ślesak I, Libik M, Karpinska B, Karpinski S, Miszalski Z (2007) The role of hydrogen peroxide in regulation of plant metabolism and cellular signalling in response to environmental stresses. Acta Biochim Pol 54(1):39–50Google Scholar
  64. Stein T (2005) Bacillus subtilis antibiotics: structures, syntheses and specific functions. Mol Microbiol 56:845–857CrossRefGoogle Scholar
  65. Tikhonov VE, Lopez-Llorca LV, Salinas J, Jansson HB (2002) Purification and characterization of chitinases from the nematophagous fungi Verticillium chlamydosporium and V. suchlasporium. Fungal Genet Biol 35:67–78CrossRefGoogle Scholar
  66. Torres J, Calderón H, Rodríguez-Arango E, Morales JG, Arango R (2012) Differential induction of pathogenesis-related proteins in banana in response to Mycosphaerella fijiensis infection. Eur J Plant Pathol 133:887–898CrossRefGoogle Scholar
  67. van Loon LC (2008) Manipulating the plant’s innate immune system by inducing resistance. Phytoparasitica 36:103–106CrossRefGoogle Scholar
  68. van Loon LC, Glick GR (2004) Increased plant fitness by rhizobacteria. In: Sandermann H (ed) Molecular ecotoxicology of plants, vol 170. Springer, Berlin, pp 177–205CrossRefGoogle Scholar
  69. van Loon LC, Van Strien EA (1999) The families of pathogenesis-related proteins, their activities, and comparative analysis of PR-1 type proteins. Physiol Mol Plant Pathol 55:85–97CrossRefGoogle Scholar
  70. van Loon LC, Rep M, Pieterse CM (2006) Significance of inducible defense-related proteins in infected plants. Annu Rev Phytopathol 44:135–162CrossRefGoogle Scholar
  71. Vance C, Kirk TK, Sherwood RT (1980) Lignification as a mechanism of disease resistance. Annu Rev Phytopathol 18:259–288CrossRefGoogle Scholar
  72. Yamamoto S, Shiraishi S, Suzuki S (2014) Are cyclic lipopeptides produced by Bacillus amyloliquefaciens S13-3 responsible for the plant defence response in strawberry against Colletotrichum gloeosporioides? Lett Appl Microbiol 60:379–386CrossRefGoogle Scholar
  73. Yang R, Fan X, Cai X, Hu F (2015) The inhibitory mechanisms by mixtures of two endophytic bacterial strains isolated from Ginkgo biloba against pepper phytophthora blight. Biol Control 85:59–67CrossRefGoogle Scholar
  74. Yazici S, Yanar Y, Karaman I (2011) Evaluation of bacteria for biological control of early blight disease of tomato. Afr J Biotechnol 10(9):1573–1577Google Scholar
  75. Yi H-S, Yang JW, Ryu C-M (2013) ISR meets SAR outside: additive action of the endophyte Bacillus pumilus INR7 and the chemical inducer, benzothiadiazole, on induced resistance against bacterial spot in field-grown pepper. Front Plant Sci 4:122CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Instituto de Biotecnología de las PlantasUniversidad Central “Marta Abreu” de Las VillasSanta ClaraCuba

Personalised recommendations