3 Biotech

, 8:138 | Cite as

World market and biotechnological production of itaconic acid

  • Juliana Cunha da Cruz
  • Aline Machado de Castro
  • Eliana Flávia Camporese Sérvulo
Review Article

Abstract

The itaconic acid (IA) world market is expected to exceed 216 million of dollars by 2020 as a result of an increasing demand for bio-based chemicals. The potential of this organic acid produced by fermentation mainly with filamentous fungi relies on the vast industrial applications of polymers derived from it. The applications may be as a superabsorbent polymer for personal care or agriculture, unsaturated polyester resin for the transportation industry, poly(methyl methacrylate) for electronic devices, among many others. However, the existence of other substitutes and the high production cost limit the current IA market. IA manufacturing is done mainly in China and other Asia–Pacific countries. Higher economic feasibility and production worldwide may be achieved with the use of low-cost feedstock of local origin and with the development of applications targeted to specific local markets. Moreover, research on the biological pathway for IA synthesis and the effect of medium composition are important for amplifying the knowledge about the production of that biochemical with great market potential.

Keywords

Bio-based chemicals Bio-based polymers Fungal fermentative processes Itaconic acid Itaconic acid polymers Itaconic acid trading market Sustainable materials 

Notes

Acknowledgements

The authors thank Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for the financial support of this work.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest in the publication.

References

  1. Aguiar A, Gonzalez-Villegas S, Rabelero M, Mendizabal E, Puig JE, Domínguez JM, Katime I (1999) Core-shell polymers with improved mechanical properties prepared by microemulsion polymerization. Macromolecules 32:6767–6771CrossRefGoogle Scholar
  2. Ambler JA, Roberts EJ (1948) The effect of pH on the stability of cis-aconitic acid in dilute solution. J Org Chem 13:399–402.  https://doi.org/10.1021/jo01161a013 CrossRefGoogle Scholar
  3. Araki T, Yamazaki Y, Suziki N (1957) Production of itaconic acid by Helicobasidium mompa TANAKA. Jpn J Phytopathol 22:83–87CrossRefGoogle Scholar
  4. Bailey A (2016) Recent activity on bioproducts that enable biofuels in the bioenergy technologies office. In: https://energy.gov/sites/prod/files/2016/11/f34/bailey_bioenergy_2016.pdf. Accessed 23 Oct 2017
  5. Bajpai SK, Jyotishi P, Bajpai M (2016) Synthesis of nanosilver loaded chitosan/poly(acrylamide-co-itaconic acid) based inter-polyelectrolyte complex films for antimicrobial applications. Carbohydr Polym 154:223–230.  https://doi.org/10.1016/j.carbpol.2016.08.044 CrossRefGoogle Scholar
  6. Batti M, Schweiger LB (1963) Process for the production of itaconic acid. Patent US 3 078 217Google Scholar
  7. Bednarz S, Fluder M, Galica M, Bogdal D, Maciejaszek I (2014) Synthesis of hydrogels by polymerization of itaconic acid-choline chloride deep eutectic solvent. J Appl Polym Sci 131:1–8.  https://doi.org/10.1002/app.40608 CrossRefGoogle Scholar
  8. Bentley R, Thiessen CP (1957) Biosynthesis of itaconic acid in Aspergillus terreus III. The properties and reaction mechanism of cis-aconitic acid decarboxylase. J Biol Chem 226:703–720Google Scholar
  9. Blazeck J, Hill A, Jamoussi M, Pan A, Miller J, Alper HS (2015) Metabolic engineering of Yarrowia lipolytica for itaconic acid production. Metab Eng 32:66–73.  https://doi.org/10.1016/j.ymben.2015.09.005 CrossRefGoogle Scholar
  10. Blumhoff ML, Steiger MG, Mattanovich D, Sauer M (2013) Targeting enzymes to the right compartment: metabolic engineering for itaconic acid production by Aspergillus niger. Metab Eng 19:26–32.  https://doi.org/10.1016/j.ymben.2013.05.003 CrossRefGoogle Scholar
  11. Calam CT, Oxford AE, Rainstrick H (1939) Studies in the biochemistry of micro-organisms: itaconic acid, a metabolic product of a strain of Aspergillus terreus Thom. Biochem J 33:1488–1495CrossRefGoogle Scholar
  12. Carstensen F, Klement T, Büchs J, Melin T, Wessling M (2013) Continuous production and recovery of itaconic acid in a membrane bioreactor. Bioresour Technol 137:179–187.  https://doi.org/10.1016/j.biortech.2013.03.044 CrossRefGoogle Scholar
  13. China (2017) Qingdao Kehai Biochemistry CO. Ltd. http://itaconic.en.china.cn/op/CorpInfo/index.htm. Accessed 1 Aug 2017
  14. Clarivate (2017) Derwent world patents index. In: https://clarivate.com/wp-content/uploads/2017/10/IP_DWPI_Sell_Sheet_0617.pdf. Accessed 31 Oct 2017
  15. Cordes T, Michelucci A, Hiller K (2015) Itaconic acid: the surprising role of an industrial compound as a Mammalian antimicrobial metabolite. Annu Rev Nutr 35:451–473.  https://doi.org/10.1146/annurev-nutr-071714-034243 CrossRefGoogle Scholar
  16. Durant YG (2011) Development of integrated production of polyitaconic acid from Northeast hardwood biomass. https://reeis.usda.gov/web/crisprojectpages/0220209-development-of-integrated-production-of-polyitaconic-acid-from-northeast-hardwood-biomass.html. Accessed 2 Aug 2017
  17. Dwiarti L, Yamane K, Yamatani H, Prihardi K, Okabe M (2002) Purification and characterization of cis-aconitic acid decarboxylase from Aspergillus terreus TN484-M1. J Biosci Bioeng 94:29–33.  https://doi.org/10.1263/jbb.94.29 CrossRefGoogle Scholar
  18. Dwiarti L, Otsuka M, Miura S, Yaguchi M, Okabe M (2007) Itaconic acid production using sago starch hydrolysate by Aspergillus terreus TN484-M1. Bioresour Technol 98:3329–3337.  https://doi.org/10.1016/j.biortech.2006.03.016 CrossRefGoogle Scholar
  19. El-Imam AA, Du C (2014) Fermentative itaconic acid production. J. Biodiversity, Bioprospect Dev 1:1–8.  https://doi.org/10.4172/2376-0214.1000119 Google Scholar
  20. Global Industry Analysis (2016) The global itaconic acid market. http://www.strategyr.com/MarketResearch/Itaconic_Acid_IA_Market_Trends.asp. Accessed 4 May 2017
  21. Global Market Insights (2016) Itaconic acid market. https://www.gminsights.com/industry-analysis/itaconic-acid-market. Accessed 4 Jun 2017
  22. Gyamerah MH (1995) Oxygen requirement and energy relations of itaconic acid fermentation by Aspergillus terreus NRRL 1960. Appl Microbiol Biotechnol 44:20–26.  https://doi.org/10.1007/bf00164475 CrossRefGoogle Scholar
  23. Hiller K, Cordes T, Michelucci A (2014) Biotechnological production of itaconic acid. WO2014161988A1Google Scholar
  24. Hope E (1927) Manufacture of glass or glass-like objects. Patent US 1 644 131Google Scholar
  25. Horitsu H, Takahashi Y, Tsuda J, Kawai K, Kawano Y (1983) Production of itaconic acid by Aspergillus terreus immobilized in polyacrylamide gels. Eur J Appl Microbiol Biotechnol 18:358–360CrossRefGoogle Scholar
  26. Hossain AH, Li A, Brickwedde A, Wilms L, Caspers M, Overkamp K, Punt PJ (2016) Rewiring a secondary metabolite pathway towards itaconic acid production in Aspergillus niger. Microb Cell Fact 15:130.  https://doi.org/10.1186/s12934-016-0527-2 CrossRefGoogle Scholar
  27. Huang J, Huang L, Lin J, Xu Z, Cen P (2010) Organic chemicals from bioprocesses in China. In: Tsao GT, Ouyand P, Chen J (eds) Advances in biochemical engineering/biotechnology. Springer, Heidelberg, pp 43–71Google Scholar
  28. Huang X, Chen M, Lu X, Li Y, Li X, Li J-J (2014a) Direct production of itaconic acid from liquefied corn starch by genetically engineered Aspergillus terreus. Microb Cell Fact 13:108CrossRefGoogle Scholar
  29. Huang X, Lu X, Li Y, Li X, Li J-J (2014b) Improving itaconic acid production through genetic engineering of an industrial Aspergillus terreus strain. Microb Cell Fact 13:119CrossRefGoogle Scholar
  30. Jiménez-Quero A, Pollet E, Zhao M, Marchioni E, Avérous L, Phalip V (2016) Itaconic and fumaric acid production from biomass hydrolysates by Aspergillus strains. J Microbiol Biotechnol 26:1557–1565.  https://doi.org/10.4014/jmb.1603.03073 CrossRefGoogle Scholar
  31. Kanamasa S, Dwiarti L, Okabe M, Park EY (2008) Cloning and functional characterization of the cis-aconitic acid decarboxylase (CAD) gene from Aspergillus terreus. Appl Microbiol Biotechnol 80:223–229.  https://doi.org/10.1007/s00253-008-1523-1 CrossRefGoogle Scholar
  32. Kane JH, Finlay AC, Amann PF (1945) Production of itaconic acid. Patent US 2 385 283Google Scholar
  33. Karaffa L, Díaz R, Papp B, Fekete E, Sándor E, Kubicek CP (2015) A deficiency of manganese ions in the presence of high sugar concentrations is the critical parameter for achieving high yields of itaconic acid by Aspergillus terreus. Appl Microbiol Biotechnol 99:7937–7944.  https://doi.org/10.1007/s00253-015-6735-6 CrossRefGoogle Scholar
  34. Kautola H, Vahvaselka M, Linko Y-Y, Linko P (1985) Itaconic acid production by immobilized Aspergillus terreus from xylose and glucose. Biotechnol Lett 7:167–172CrossRefGoogle Scholar
  35. Kautola H, Vassilev N, Linko Y-Y (1989) Itaconic acid production by immobilized Aspergillus terreus on sucrose medium. Biotechnol Lett 11:313–318CrossRefGoogle Scholar
  36. Kautola H, Rymowicz W, Linko Y, Linko P (1991) Itaconic acid production by immobilized Asperyillus terreus with varied metal additions. Appl Microbiol Biotechnol 35:154–158Google Scholar
  37. Kinoshita K (1931) Über eine neue Aspergillus-Art, Asp. itaconicus nov. spec. Bot Mag Tokyo 45:45–60CrossRefGoogle Scholar
  38. Klement T, Büchs J (2013) Itaconic acid: a biotechnological process in change. Bioresour Technol 135:422–431.  https://doi.org/10.1016/j.biortech.2012.11.141 CrossRefGoogle Scholar
  39. Kocabas A, Ogel ZB, Bakir U (2014) Xylanase and itaconic acid production by Aspergillus terreus NRRL 1960 within a biorefinery concept. Ann Microbiol 64:75–84.  https://doi.org/10.1007/s13213-013-0634-9 CrossRefGoogle Scholar
  40. Krull S, Hevekerl A, Kuenz A, Prüße U (2017) Process development of itaconic acid production by a natural wild type strain of Aspergillus terreus to reach industrially relevant final titers. Appl Microbiol Biotechnol 101:4063–4072.  https://doi.org/10.1007/s00253-017-8192-x CrossRefGoogle Scholar
  41. Kuenz A, Gallenmüller Y, Willke T, Vorlop K-D (2012) Microbial production of itaconic acid: developing a stable platform for high product concentrations. Appl Microbiol Biotechnol 96:1209–1216.  https://doi.org/10.1007/s00253-012-4221-y CrossRefGoogle Scholar
  42. Lai L-ST, Hung C-S, Lo C-C (2007) Effects of lactose and glucose on production of itaconic acid and lovastatin by Aspergillus terreus ATCC 20542. J Biosci Bioeng 104:9–13.  https://doi.org/10.1263/jbb.104.9 CrossRefGoogle Scholar
  43. Larsen H, Eimhjellen KE (1955) The mechanism of itaconic acid formation by Aspergillus terreus 1. The effect of acidity. Biochem J 60:135–139CrossRefGoogle Scholar
  44. Laube H, Kennedy MC, Beinert H (1994) Crystal structures of aconitate with trans-aconitate and nitrocitrate bound. J Mol Biol 237:437–451CrossRefGoogle Scholar
  45. Levinson WE, Kurtzman CP, Kuo TM (2006) Production of itaconic acid by Pseudozyma antarctica NRRL Y-7808 under nitrogen-limited growth conditions. Enzyme Microb Technol 39:824–827.  https://doi.org/10.1016/j.enzmictec.2006.01.005 CrossRefGoogle Scholar
  46. Li A, Pfelzer N, Zuijderwijk R, Punt P (2012) Enhanced itaconic acid production in Aspergillus niger using genetic modification and medium optimization. BMC Biotechnol 12:57.  https://doi.org/10.1186/1472-6750-12-57 CrossRefGoogle Scholar
  47. Li A, Pfelzer N, Zuijderwijk R, Brickwedde A, Cora Z, Punt P (2013) Reduced by-product formation and modified oxygen availability improve itaconic acid production in Aspergillus niger. Appl Microbiol Biotechnol 97:3901–3911.  https://doi.org/10.1007/s00253-012-4684-x CrossRefGoogle Scholar
  48. Lin Y, Li Y, Huang M, Tsai Y (2004) Intracellular expression of Vitreoscilla hemoglobin in Aspergillus terreus to alleviate the effect of a short break in aeration during culture. Biotechnol Lett 26:1067–1072Google Scholar
  49. Lockwood LB, Moyer AJ (1945) Method for the production of itaconic acid. Patent US 2 462 981Google Scholar
  50. Lockwood LB, Ward GE (1945) Fermentation process for itaconic acid. Ind Eng Chem 37:405–406.  https://doi.org/10.1021/ie50424a029 CrossRefGoogle Scholar
  51. Maassen N, Panakova M, Wierckx N, Geiser E, Zimmermann M, Bölker M, Klinner U, Blank LM (2014) Influence of carbon and nitrogen concentration on itaconic acid production by the smut fungus Ustilago maydis. Eng Life Sci 14:129–134.  https://doi.org/10.1002/elsc.201300043 CrossRefGoogle Scholar
  52. Macrotrends (2017) Crude oil prices—70 year historical chart. In: http://www.macrotrends.net/1369/crude-oil-price-history-chart. Accessed 31 Oct 2017
  53. Marvel CS, Shepherd TH (1959) Polymerization reactions of itaconic acid and some of its derivaties. J Org Chem 24:599–605CrossRefGoogle Scholar
  54. Merger F, Liebe J (1991) Preparation of 1,1-disubstituted ethylene componds. Patent US 4(997):955Google Scholar
  55. Miall LM (1978) Organic acids. In: Rose AH (ed) Economic microbiology: primary products of metabolism. Academic, pp 47–119Google Scholar
  56. Michelucci A, Cordes T, Ghelfi J, Pailot A, Reiling N, Goldmann O, Binz T, Wegner A, Tallam A, Rausell A, Buttini M, Linster CL, Medina E, Balling R, Hiller K (2013) Immune-responsive gene 1 protein links metabolism to immunity by catalyzing itaconic acid production. Proc Natl Acad Sci USA 110:7820–7825.  https://doi.org/10.1073/pnas.1218599110 CrossRefGoogle Scholar
  57. Nelson GEN, Traufler DH, Kelley S, Lockwood LB (1952) Production of itaconic acid by Aspergillus terreus in 20-liter fermentors. Ind Eng Chem 44:1166–1168.  https://doi.org/10.1021/ie50509a062 CrossRefGoogle Scholar
  58. Nguyen-Thai NU, Hong SC (2014) Controlled architectures of poly(acrylonitrile-co-itaconic acid) for efficient structural transformation into carbon materials. Carbon N Y 69:571–581.  https://doi.org/10.1016/j.carbon.2013.12.068 CrossRefGoogle Scholar
  59. NRRL (2017) ARS Culture Collection Database, mold, Aspergillus terreus NRRL 1960. https://nrrl.ncaur.usda.gov/cgi-bin/usda/mold/repo. Accessed 7 Aug 2017
  60. Nubel RC, Ratajak W, Ratajak EJ (1962) Process for producing itaconic acid. Patent US 3 044 941Google Scholar
  61. OECD (2017) Economic analysis and statistics division directorate for science, technology and industry. In: https://www.oecd.org/sti/sci-tech/37569498.pdf. Accessed 29 Oct 2017
  62. Okabe M, Lies D, Kanamasa S, Park EY (2009) Biotechnological production of itaconic acid and its biosynthesis in Aspergillus terreus. Appl Microbiol Biotechnol 84:597–606.  https://doi.org/10.1007/s00253-009-2132-3 CrossRefGoogle Scholar
  63. Okamoto S, Chin T, Hiratsuka K, Aso Y, Tanaka Y, Takahashi T, Ohara H (2014) Production of itaconic acid using metabolically engineered Escherichia coli. J Gen Appl Microbiol 60:191–197.  https://doi.org/10.2323/jgam.60.191 CrossRefGoogle Scholar
  64. Pedroso GB, Montipó S, Mario DAN, Alves SH, Martins AF (2017) Building block itaconic acid from left-over biomass. Biomass Convers Biorefinery 7:23–35.  https://doi.org/10.1007/s13399-016-0210-1 CrossRefGoogle Scholar
  65. Petruccioli M, Pulci V, Federici F (1999) Itaconic acid production by Aspergillus terreus on raw starchy materials. Lett Appl Microbiol 28:309–312CrossRefGoogle Scholar
  66. Pfeifer VF, Vojnovich C, Heger EN (1952) Itaconic acid by fermentation with Aspergillus terreus. Ind Eng Chem 44:2975–2980.  https://doi.org/10.1021/ie50516a055 CrossRefGoogle Scholar
  67. PubChem (2017) Itaconic acid. In: https://pubchem.ncbi.nlm.nih.gov/compound/811. Accessed 11 Aug 2017
  68. Rabelero M, Trujillo A, Ceja I, Caché G, Mendizábal E, Esquena J, Solans C, Puig JE (2013) Effects of the functionalizing agent, itaconic acid, on the mechanical properties of microemulsion-made core/shell polymers. Polym Eng Sci 53:1529–1535.  https://doi.org/10.1002/pen.23404 CrossRefGoogle Scholar
  69. Rafi M, Hanumanthu MG, Rao DM, Venkateswarlu K (2014) Production of itaconic acid by Ustilago maydis from agro wastes in solid state fermentation. J BioScience Biotech 3:163–168Google Scholar
  70. Rebholz K, Northrop D (1994) Kinetics of enzymes with iso-mechanisms: dead-end inhibition of fumarase and carbonic anhydrase II. ‎Arch. Biochem Biophys 312:227–233CrossRefGoogle Scholar
  71. Reddy CS, Singh R (2002) Enhanced production of itaconic acid from corn starch and market refuse fruits by genetically manipulated Aspergillus terreus SKR10. Bioresour Technol 85:69–71.  https://doi.org/10.1016/s0960-8524(02)00075-5 CrossRefGoogle Scholar
  72. Report Linker (2017) Global bio-based chemicals market forecast 2017–2025. In: https://www.reportlinker.com/p05001382/Global-Bio-Based-Chemicals-Market-Forecast.html. Accessed 24 Oct 2017
  73. Riscaldati E, Moresi M, Federici F, Petruccioli M (2000) Effect of pH and stirring rate on itaconate production by Aspergillus terreus. J Biotechnol 83:219–230CrossRefGoogle Scholar
  74. Sadeghi M, Hosseinzadeh H (2008) Synthesis of starch-poly(sodium acrylate-co-acrylamide) superabsorbent hydrogel with salt and pH-responsiveness properties as a drug delivery system. J Bioact Compat Polym 23:381–404CrossRefGoogle Scholar
  75. Saha BC (2017) Emerging biotechnologies for production of itaconic acid and its applications as a platform chemical. J Ind Microbiol Biotechnol 44:303–315.  https://doi.org/10.1007/s10295-016-1878-8 CrossRefGoogle Scholar
  76. Scopus (2017) Scopus. In: https://www.elsevier.com/solutions/scopus. Accessed 28 Oct 2017
  77. Shi D, Gao Y, Sun L, Chen M (2014) Superabsorbent poly(acrylamide-co-itaconic acid) hydrogel microspheres: preparation, characterization and absorbency. Polym Sci 56:275–282.  https://doi.org/10.1134/s0965545x14030146 Google Scholar
  78. Shin JH, Yang JY, Jeon BY, Yoon YJ, Cho SN, Kang YH, Ryu DH, Hwang GS (2011) 1H NMR-based metabolomic profiling in mice infected with Mycobacterium tuberculosis. J Proteome Res 10:2238–2247.  https://doi.org/10.1021/pr101054m CrossRefGoogle Scholar
  79. Sieker T, Poth S, Tippkötter N, Ulber R (2012) Itaconic acid production from beech wood hydrolysates. https://www.mv.uni-kl.de/biovt/forschung/poster/LCB2_02. Accessed 2 Jun 2017
  80. Steiger MG, Punt PJ, Ram AFJ, Mattanovich D, Sauer M (2016) Characterizing MttA as a mitochondrial cis-aconitic acid transporter by metabolic engineering. Metab Eng 35:95–104.  https://doi.org/10.1016/j.ymben.2016.02.003 CrossRefGoogle Scholar
  81. Sugimoto M, Sakagami H, Yokote Y, Onuma H, Kaneko M, Mori M, Sakaguchi Y, Soga T (2011) Non-targeted metabolite profiling in activated macrophage secretion. Metabolomics 8:624–633.  https://doi.org/10.1007/s11306-011-0353-9 CrossRefGoogle Scholar
  82. Tabuchi T, Sugisawa T, Ishidori T, Nakahara T, Sugiyama J (1981) Itaconic acid fermentation by a yeast belonging to the genus Candida. Agric Biol Chem 45:475–479.  https://doi.org/10.1271/bbb1961.45.475 Google Scholar
  83. Tate BE (1967) Polymerization of itaconic acid derivatives. Adv Polym Sci 5:214–232.  https://doi.org/10.1002/pol.1967.150050401 CrossRefGoogle Scholar
  84. Transparency Market Research (2015) Itaconic acid market for synthetic latex, unsaturated polyester resins, detergents, superabsorbent polymers (SAP), and other applications—global industry analysis, size, share, growth, trends and forecast 2015—2023. http://www.transparencymarketresearch.com/itaconic-acid-market.html. Accessed 4 May 2017
  85. Tsai Y-C, Huang M-C, Lin S-F, Su Y-C (2001) Method for the production of itaconic acid using Aspergillus terreus solid state fermentation. Patent US 6 171 831 B1Google Scholar
  86. Turner E, Liebig J (1841) Elements of chemistry, 6th edn. Taylor and Walton, LondonGoogle Scholar
  87. Vassilev N, Kautola H, Linko Y-Y (1992) Immobilized Aspergillus terreus in itaconic acid production from glucose. Biotechnol Lett 14:201–206CrossRefGoogle Scholar
  88. Vassilev N, Medina A, Mendes G, Galvez A, Martos V, Vassileva M (2013) Solubilization of animal bonechar by a filamentous fungus employed in solid state fermentation. Ecol Eng 58:165–169.  https://doi.org/10.1016/j.ecoleng.2013.06.029 CrossRefGoogle Scholar
  89. Voll A, Klement T, Gerhards G, Büchs J, Marquardt W (2012) Metabolic modelling of itaconic acid fermentation with Ustilago maydis. Chem Eng Trans 27:367–372.  https://doi.org/10.3303/cet1227062 Google Scholar
  90. Vrabl P, Fuchs V, Pichler B, Schinagl CW, Burgstaller W (2012) Organic acid excretion in Penicillium ochrochloron increases with ambient pH. Front Microbiol 3:1–10.  https://doi.org/10.3389/fmicb.2012.00121 CrossRefGoogle Scholar
  91. Weastra SRO (2012) Determination of market potential for selected platform chemicals—itaconic acid, succinic adis, 2,5-furandicarboxylic acid. http://www.bioconsept.eu/wp-content/uploads/BioConSepT_Market-potential-for-selected-platform-chemicals_report1.pdf. Accessed 6 Sep 2016
  92. Welter K (2000) Biotechnische Produktion von Itaconsäure aus nachwachsenden Rohstoffen mit immobilisierten Zellen. Dissertation. Technische Universität BraunschweigGoogle Scholar
  93. Werpy T, Petersen G (2004) Top value added chemicals from biomass volume I—results of screening for potential candidates from sugars and synthesis gas. In: https://www.nrel.gov/docs/fy04osti/35523.pdf. Accessed 15 Aug 2016
  94. Willke T, Vorlop KD (2001) Biotechnological production of itaconic acid. Appl Microbiol Biotechnol 56:289–295.  https://doi.org/10.1007/s002530100685 CrossRefGoogle Scholar
  95. Zhang K, Zhang B, Yang S (2013) Production of citric, itaconic, fumaric and malic acids in filamentous fungal fermentations. In: Yang S-T, El-Enshasy HA, Thongchul N (eds) Bioprocessing technologies in biorefinery for sustainable production of fuels, chemicals, and polymers. Wiley, Hoboken, p 24Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Escola de QuímicaUniversidade Federal do Rio de Janeiro, 2030, Centro de TecnologiaRio de JaneiroBrazil
  2. 2.Divisão de BiotecnologiaCentro de Pesquisa e Desenvolvimento, PETROBRAS, Av. Horácio MacedoRio de JaneiroBrazil

Personalised recommendations