3 Biotech

, 8:121 | Cite as

The acyl-CoA binding protein affects Monascus pigment production in Monascus ruber CICC41233

  • Chuannan Long
  • Mengmeng Liu
  • Xia Chen
  • Xiaofang Wang
  • Mingqiang Ai
  • Jingjing Cui
  • Bin Zeng
Original Article
  • 18 Downloads

Abstract

The present study verified whether acyl-coenzyme A (acyl-CoA)-binding protein (ACBP) affected the production of Monascus pigments (MPs) in Monascus ruber CICC41233 (MrACBP). Phylogenetic analysis revealed that the cloned Mracbp gene, which encoded the MrACBP protein, exhibited the closest match (99% confidence level) to the gene from Penicilliopsis zonata. The MrACBP and maltose-binding protein (MBP) were simultaneously expressed in Escherichia coli Rosetta DE3 in the form of a fusion protein. The microscale thermophoresis binding assay revealed that the purified MBP–MrACBP exhibited a higher affinity for myristoyl-CoA (Kd = 88.16 nM) than for palmitoyl-CoA (Kd = 136.07 nM) and octanoyl-CoA (Kd = 270.9 nM). Further, the Mracbp gene was homologously overexpressed in M. ruber CICC41233, and a positive transformant M. ruber ACBP5 was isolated. The fatty acid myristic acid in M. ruber ACBP5 was lower than that in the parent strain M. ruber CICC41233. However, when compared with the parent strain, the production of total MPs, water-soluble pigment, and ethanol-soluble pigment in M. ruber ACBP5 increased by 11.67, 9.80, and 12.70%, respectively, after 6 days. The relative gene expression level, as determined by a quantitative real-time polymerase chain reaction analysis, of the key genes acbp, pks, mppr1, fasA, and fasB increased by 4.03-, 3.58-, 1.67-, 2.11-, and 2.62-fold after 6 days. These data demonstrate the binding preference of MrACBP for myristoyl-CoA, and its influence on MPs production.

Keywords

Acyl-coenzyme A binding protein Monascus pigments Monascus ruber Microscale thermophoresis binding assay Myristoyl-CoA 

Notes

Acknowledgements

This work was funded by the National Natural Science Foundation of China (Grant numbers 31171731, 31460447), Jiangxi Province Science Foundation for Foreign science and technology cooperation project (Grant no. 20142BDH80003), Jiangxi Province Science Foundation for Youths (Grant no. 20161BAB214177), and the Jiangxi Provincial Department of Education (Grant no. GJJ150802).

Compliance with ethical standards

Conflict of interest

The authors declare no conflicts of interest.

Supplementary material

13205_2018_1147_MOESM1_ESM.docx (82 kb)
Supplementary material 1 (DOCX 82 kb)
13205_2018_1147_MOESM2_ESM.docx (15 kb)
Supplementary material 2 (DOCX 14 kb)
13205_2018_1147_MOESM3_ESM.docx (13 kb)
Supplementary material 3 (DOCX 13 kb)

References

  1. Balakrishnan BJ, Karki S, Chiu SH, Kim HJ, Suh JW, Nam B, Yoon YM, Chen CC, Kwon HJ (2013) Genetic localization and in vivo characterization of a Monascus azaphilone pigment biosynthetic gene cluster. Appl Microbiol Biotechnol 97:6337–6345CrossRefGoogle Scholar
  2. Balakrishnan B, Kim HJ, Suh JW, Chen CC, Liu KH, Park SH, Kwon HJ (2014) Monascus azaphilone pigment biosynthesis employs a dedicated fatty acid synthase for short chain fatty acyl moieties. J Korean Soc Appl Biol Chem 57(2):191–196CrossRefGoogle Scholar
  3. Balakrishnan B, Park SH, Kwon HJ (2017) A reductase gene mppE controls yellow component production in azaphilone polyketide pathway of Monascus. Biotechnol Lett 39(1):163–169CrossRefGoogle Scholar
  4. Burton M, Rose TM, Faergeman NJ, Knudsen J (2005) Evolution of the acyl-CoA binding protein (ACBP). Biochem J 392:299–307CrossRefGoogle Scholar
  5. Chen WP, He Y, Zhou YX, Shao YC, Feng YL, Li M, Chen FS (2015) Edible filamentous fungi from the species Monascus: early traditional fermentations, modern molecular biology, and future genomics. Compr Rev Food Sci Food Saf 14:555–567CrossRefGoogle Scholar
  6. Duran JM, Anjard C, Stefan C, Loomis WF, Malhotra V (2010) Unconventional secretion of Acb1 is mediated by autophagosomes. J Cell Biol 188(4):527–536CrossRefGoogle Scholar
  7. Færgeman NJ, Feddersen S, Christiansen JK, Larsen MK, Schneiter R, Ungermann C, Mutenda K, RoepstorffP Knudsen J (2004) Acyl-CoA-binding protein, Acb1p, is required for normal vacuole function and ceramide synthesis in Saccharomyces cerevisiae. Biochem J 380:907–918CrossRefGoogle Scholar
  8. Færgeman NJ, Wadum M, Feddersen S, Burton M, Kragelund BB, Knudsen J (2007) Acyl-CoA binding proteins; structural and functional conservation over 2000 MYA. Mol Cell Biochem 299:55–65CrossRefGoogle Scholar
  9. Feng Y, Shao Y, Chen F (2012) Monascus pigments. Appl Microbiol Biotechnol 96(6):1421–1440CrossRefGoogle Scholar
  10. Frolov A, Schroeder F (1998) Acyl coenzyme A binding protein. J Biol Chem 273(18):11049–11055CrossRefGoogle Scholar
  11. Hajjaj H, Klaébé A, Goma G, Blanc PJ, Barbier E, François J (2000) Medium-chain fatty acids affect citrinin production in the filamentous fungus Monascus ruber. Appl Environ Microbiol 66:1120–1125CrossRefGoogle Scholar
  12. Hao Q, Liu X, Zhao G, Jiang L, Li M, Zeng B (2016) Recombinant expression, purification, and characterization of an acyl-CoA binding protein from Aspergillus oryzae. Biotechnol Lett 38(3):519–525CrossRefGoogle Scholar
  13. Jerabek-Willemsen M, Wienken CJ, Braun D, Baaske P, Duhr S (2011) Molecular interaction studies using microscale thermophoresis. Assay Drug Dev Technol 9:342–353CrossRefGoogle Scholar
  14. Kalaivani M, Sabitha R, Kalaiselvan V, Rajasekaran A (2010) Health benefits and clinical impact of major nutrient, red yeast rice: a review. Food Bioprocess Technol 3:333–339CrossRefGoogle Scholar
  15. Knudsen J, Faergeman NJ, Skøtt H, Hummel R, Børsting C, Rose TM, Andersen JS, Højrup P, Roepstorff P, Kristiansen K (1994) Yeast acyl-CoA-binding protein: acyl-CoA-binding affinity and effect on intracellular acyl-CoA pool size. Biochem J 302(2):479–485CrossRefGoogle Scholar
  16. Kocsubé S, Perrone G, Magistà D, Houbraken J, Varga J, Szigeti G, Hubka V, Hong SB, Frisvad JC, Samson RA (2016) Aspergillus is monophyletic: evidence from multiple gene phylogenies and extrolites profiles. Stud Mycol 85:199–213CrossRefGoogle Scholar
  17. Kwon HS, Kawaguchi K, Kikuma T, Takegawa K, Kitamoto K, Higuchi Y (2017) Analysis of an acyl-CoA binding protein in Aspergillus oryzae that undergoes unconventional secretion. Biochem Biophys Res Commun 493(1):481–486CrossRefGoogle Scholar
  18. Lopes FC, Tichota DM, Pereira JQ, Segalin J, Rios AO, Brandelli A (2013) Pigment production by filamentous fungi on agro-industrial byproducts: an eco-friendly alternative. Appl Biochem Biotechnol 171:616–625CrossRefGoogle Scholar
  19. Parker JL, Newstead S (2014) Molecular basis of nitrate uptake by the plant nitrate transporter NRT1.1. Nature 507:68–72CrossRefGoogle Scholar
  20. Patakova P (2013) Monascus secondary metabolites: production and biological activity. J Ind Microbiol Biotechnol 40:169–181CrossRefGoogle Scholar
  21. Shi K, Song D, Chen G, Pistolozzi M, Wu Z, Quan L (2015) Controlling composition and color characteristics of Monascus pigments by pH and nitrogen sources in submerged fermentation. J Biosci Bioeng 120:145–154CrossRefGoogle Scholar
  22. van Aalten DMF, Miline KG, Zou JY, Kleywegt GJ, Bergfors T, Ferguson MAJ, Knudsen J, Jones TA (2001) Binding site differences revealed by crystal structures of Plasmodium falciparum and bovine acyl-CoA binding protein. J Mol Biol 309:181–192CrossRefGoogle Scholar
  23. Wang B, Zhang XH, Wu ZQ, Wang ZL (2015) Investigation of relationship between lipid and Monascus pigment accumulation by extractive fermentation. J Biotechnol 212:167–173CrossRefGoogle Scholar
  24. Wu XL, Tong YD, Shankar K, Baumgardner JN, Kang J, Badeaux J, Badger TM, Ronis MJJ (2011) Lipid fatty acid profile analyses in liver and serum in rats with nonalcoholic steatohepatitis using improved gas chromatography-mass spectrometry methodology. J Agric Food Chem 59(2):747–754CrossRefGoogle Scholar
  25. Xiao S, Chye ML (2011) New roles for acyl-CoA-binding proteins (ACBPs) in plant development, stress responses and lipid metabolism. Prog Lipid Res 50:141–151CrossRefGoogle Scholar
  26. Yao YP, Ouyang CS, Jiang L, Liu XG, Hao Q, Zhao GZ, Zeng B (2016) Specificity of acyl-CoA binding protein to acyl-CoAs: influence on the lipid metabolism in Aspergillus oryzae. RSC Adv 6:94859–94865CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Chuannan Long
    • 1
    • 2
  • Mengmeng Liu
    • 2
  • Xia Chen
    • 2
  • Xiaofang Wang
    • 2
  • Mingqiang Ai
    • 1
    • 2
  • Jingjing Cui
    • 1
  • Bin Zeng
    • 1
    • 2
  1. 1.Jiangxi Key Laboratory of Bioprocess EngineeringJiangxi Science and Technology Normal UniversityNanchangPeople’s Republic of China
  2. 2.School of Life ScienceJiangxi Science and Technology Normal UniversityNanchangPeople’s Republic of China

Personalised recommendations