Efficient excitation of novel graphene plasmons using grating coupling

Abstract

Excitation of novel graphene plasmons is examined using finite-element analysis via COMSOL RF module 5.6. The theoretical model is simulated with graphene grating on the glass substrate having fixed periodicity (Λ = 700 nm) by illumination with transverse magnetic (TM) polarized light through the substrate side. The effect of thickness variation on SPPs excitation has been acquired from transmission spectra while keeping the periodicity and slit width of grating structure constant via analyzing the trend followed by the resonance dips. The electric and magnetic field behavior has also been analyzed for each thickness, and a specific grating thickness of 10 nm was taken into consideration owing to the thickness constraints regarding graphene. Slit width variation of the grating structure has been investigated using far-field analysis to observe the formation of SPPs from transmission spectra and near-field analysis for understanding the underlying physics. These analyses resulted in SPP excitation more appreciable at slit widths in between 250 and 350 nm. The slit width range regarding the chosen periodicity supports the most efficient plasmonics mode and many applications of such devices are found in real life.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Afsheen S et al (2019) Modeling of 1D Au plasmonic grating as efficient gas sensor. Mater Res Exp 6(12):126203

    CAS  Article  Google Scholar 

  2. Afsheen S et al (2020) Surface plasmon based 1D-grating device for efficient sensing using noble metals. Opt Quantum Electron 52(2):64

    CAS  Article  Google Scholar 

  3. Afsheen S et al (2020a) Optimizing the sensing efficiency of plasmonic based gas sensor. Plasmonics 2020:1–6

    Google Scholar 

  4. Afsheen S et al (2020b) Optimizing the sensing efficiency of plasmonic based gas sensor. Plasmonics. https://doi.org/10.1007/s11468-020-01318-0

    Article  Google Scholar 

  5. Anker JN et al (2010) Biosensing with plasmonic nanosensors. Nanosci Technol 2010(308):319

    Google Scholar 

  6. Billaudeau C et al (2009) Tailoring radiative and non-radiative losses of thin nanostructured plasmonic waveguides. Opt Express 17(5):3490–3499

    CAS  Article  Google Scholar 

  7. Darmanyan SA, Zayats AV (2003) Light tunneling via resonant surface plasmon polariton states and the enhanced transmission of periodically nanostructured metal films: an analytical study. Phys Rev B 67(3):035424

    Article  Google Scholar 

  8. Fei Z et al (2011) Infrared nanoscopy of Dirac plasmons at the graphene–SiO2 interface. Nano Lett 11(11):4701–4705

    CAS  Article  Google Scholar 

  9. Gao W et al (2012) Excitation of plasmonic waves in graphene by guided-mode resonances. ACS Nano 6(9):7806–7813

    CAS  Article  Google Scholar 

  10. Hessel A, Oliner A (1993) A new theory of Wood’s anomalies on optical gratings (from Applied Optics 1965). SPIE Milestone Series MS 83:332–332

    Google Scholar 

  11. Iqbal T et al (2019) An optimal Au grating structure for light absorption in amorphous silicon thin film solar cell. Plasmonics 14(1):147–154

    CAS  Article  Google Scholar 

  12. Iqbal T et al (2019) Investigation of plasmonic bandgap for 1D exposed and buried metallic gratings. Plasmonics 14(2):493–499

    Article  Google Scholar 

  13. Iqbal T et al (2021) Study of plasmonic bandgap by optimization of geometrical parameters of metallic grating devices. Solid State Commun 2021:114212

    Article  Google Scholar 

  14. Javaid M, Iqbal T (2016) Plasmonic bandgap in 1D metallic nanostructured devices. Plasmonics 11(1):167–173

    CAS  Article  Google Scholar 

  15. Ju L et al (2011) Graphene plasmonics for tunable terahertz metamaterials. Nat Nanotechnol 6(10):630

    CAS  Article  Google Scholar 

  16. Kociak M et al (2011) Spatially resolved EELS: the Spectrum-Imaging technique and its applications Scanning Transmission Electron Microscopy. Springer, Berlin, pp 163–205

    Google Scholar 

  17. Krasavin A, Zayats A (2007) Passive photonic elements based on dielectric-loaded surface plasmon polariton waveguides. Appl Phys Lett 90(21):211101

    Article  Google Scholar 

  18. Kumar M et al (2015) Examining the performance of refractory conductive ceramics as plasmonic materials: a theoretical approach. ACS Photonics 3(1):43–50

    Article  Google Scholar 

  19. Lal S, Link S, Halas NJ (2007) Nano-optics from sensing to waveguiding. Nat Photonics 1(11):641

    CAS  Article  Google Scholar 

  20. Liao H, Nehl CL, Hafner JH (2006) Biomedical applications of plasmon resonant metal nanoparticles. Nanaomedicine 1(2):201–208

    CAS  Article  Google Scholar 

  21. Maier SA (2007) Plasmonics: fundamentals and applications. Springer, New York

    Google Scholar 

  22. Moskovits M (1985) Surface-enhanced spectroscopy. Rev Modern Phys 57(3):783

    CAS  Article  Google Scholar 

  23. Myroshnychenko V et al (2008) Modelling the optical response of gold nanoparticles. Chem Soc Rev 37(9):1792–1805

    CAS  Article  Google Scholar 

  24. Nikitin AY et al (2011) Edge and waveguide terahertz surface plasmon modes in graphene microribbons. Phys Rev B 84(16):161407

    Article  Google Scholar 

  25. O’Connor D (2010) Modelling of nano-optic light delivery mechanisms for use in high density data storage. Queen’s University Belfast, Belfast

    Google Scholar 

  26. Raether H (1988) Surface plasmons on smooth surfaces. Surface plasmons on smooth and rough surfaces and on gratings. Springer, New York, pp 4–39

    Google Scholar 

  27. Rameshchandra KM (2014) Design and detailed study of graphene based plasmonic waveguide. VIT University, Vellore

    Google Scholar 

  28. Ritchie RH (1957) Plasma losses by fast electrons in thin films. Phys Rev 106(5):874

    CAS  Article  Google Scholar 

  29. Rosengart E-H, Pockrand I (1977) Influence of higher harmonics of a grating on the intensity profile of the diffraction orders via surface plasmons. Opt Lett 1(6):194–195

    CAS  Article  Google Scholar 

  30. Thongrattanasiri S, Koppens FH, De Abajo FJG (2012a) Complete optical absorption in periodically patterned graphene. Phys Rev Lett 108(4):047401

    Article  Google Scholar 

  31. Thongrattanasiri S, Manjavacas A, García de Abajo FJ (2012b) Quantum finite-size effects in graphene plasmons. ACS Nano 6(2):1766–1775

    CAS  Article  Google Scholar 

  32. Weber J, Calado V, Van De Sanden M (2010) Optical constants of graphene measured by spectroscopic ellipsometry. Appl Phys Lett 97(9):091904

    Article  Google Scholar 

  33. Yan H et al (2012) Plasmonics of coupled graphene micro-structures. New J Phys 14(12):125001

    Article  Google Scholar 

  34. Zhao Y et al (2013) Infrared biosensors based on graphene plasmonics: modeling. Phys Chem Chem Phys 15(40):17118–17125

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Tahir Iqbal or Almas Bashir.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Iqbal, T., Bibi, S., Bashir, A. et al. Efficient excitation of novel graphene plasmons using grating coupling. Appl Nanosci (2021). https://doi.org/10.1007/s13204-021-01748-0

Download citation

Keywords

  • Graphene grating
  • Slit width
  • Electric and magnetic field
  • Near-field and far-field analysis
  • Surface plasmon polaritons (SPPs)