Influence of the preparation method and aluminum ion substitution on the structure and electrical properties of lithium–iron ferrites

Abstract

In this study, we report the synthesis of nanosized Al-substituted lithium–iron ferrites Li0.5AlxFe2.5-xO4(0 ≤ x ≤ 1) by sol–gel auto-combustion method and by ceramic method with double sintering. Synthesized materials were studied using X-ray diffraction and impedance spectroscopy. The samples obtained by chemical methods have a higher homogeneity of the distribution of elements by volume, good repeatability of the result, high crystallinity, small crystallite size and perfect stoichiometry. Based on Koop's theory, the basic regularities of the behavior of the dielectric constant and the loss tangent are explained. The jump mechanism of conductivity has been realized by the transition of an electron between iron ions in different valence states. Samples synthesized by the sol–gel auto-combustion show technological characteristics, compared with systems obtained by solid-phase method.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. Sijo AK, Dutta DP, Roy M (2017) Dielectric properties of CoCrFeO4 nano-powder prepared by solution self combustion synthesis. Ceramics Int 43(18):16915–16918. https://doi.org/https://doi.org/10.1016/j.ceramint.2017.09.093

  2. Aravind G, Ravinder D, Nathanial V (2014) Structural and electrical properties of Li–Ni nanoferrites synthesised by citrate gel autocombustion method. Phys Res Int 2014:1–11. https://doi.org/10.1155/2014/672739

    Article  Google Scholar 

  3. Argentina GM, Baba PD (1974) Microwave Lithium ferrites: an overview. IEEE Trans Microw Theory Tech 22(6):652–658. https://doi.org/10.1109/tmtt.1974.1128308

    CAS  Article  Google Scholar 

  4. Arillo MÁ, López ML, Pico C, Veiga ML, Cuello G (2004) Order–disorder transition and magnetic ordering in lithium–titanium ferrites. Phys B 350(1–3):E301–E304. https://doi.org/10.1016/j.physb.2004.03.075

    CAS  Article  Google Scholar 

  5. Darul J, Nowicki W, Piszora P, Baehtz C, Wolska E (2005) Synchrotron X-ray powder diffraction studies on the order–disorder phase transition in lithium ferrites. J Alloy Compd 401(1–2):60–63. https://doi.org/10.1016/j.jallcom.2005.02.058

    CAS  Article  Google Scholar 

  6. El-Fadl AA, Abd-Elrahman MI, Younis N, Afify N, Abu-Sehly AA, Hafiz MM (2019) Syntheses of new spinels Zn1-Fe Al2O4 nanocrystallines structure: Optical and magnetic characteristics. J Alloy Compd 795:114–119. https://doi.org/10.1016/j.jallcom.2019.05.008

    CAS  Article  Google Scholar 

  7. Gajula GR, Buddiga LR (2020) Structural, ferroelectric, dielectric, impedance and magnetic properties of Gd and Nb doped barium titanate-lithium ferrite solid solutions. J Magn Magn Mater 494:165822. https://doi.org/10.1016/j.jmmm.2019.165822

    CAS  Article  Google Scholar 

  8. Gul S, Yousuf MA, Anwar A, Warsi MF, Agboola PO, Shakir I, Shahid M (2020) Al-substituted zinc spinel ferrite nanoparticles: preparation and evaluation of structural, electrical, magnetic and photocatalytic properties. Ceram Int 46(9):14195–14205. https://doi.org/10.1016/j.ceramint.2020.02.228

    CAS  Article  Google Scholar 

  9. Jha VK, Sijo AK, Alam SN, Roy M (2019) Effect of Nd doping on structural, electrical, thermal and magnetic properties of multifunctional BiFeO3 Ceramics. J Supercond Novel Magn 33(2):455–461. https://doi.org/10.1007/s10948-019-05206-5

    CAS  Article  Google Scholar 

  10. Kaykan LS, Mazurenko JS, Yaremiy IP, Bandura KV, Ostapovych NV (2019) Effect of nickel ions substitution on the structural and electrical properties of a nanosized lithium-iron ferrite obtained by the sol-gel auto-combustion method. J Nano- and Electron Phys 11(5):05041–1–05041–05047. https://doi.org/10.21272/jnep.11(5).05041

  11. Kaykan LS, Mazurenko JS, Sijo AK, Makovysyn VI (2020) Structural properties of magnesium-substituted lithium ferrites. Appl Nanosci 10(8):2739–2747. https://doi.org/10.1007/s13204-020-01259-4

    CAS  Article  Google Scholar 

  12. Khan MZ, Gul IH, Baig MM, Khan AN (2020) Comprehensive study on structural, electrical, magnetic and photocatalytic degradation properties of Al3+ ions substituted nickel ferrites nanoparticles. J Alloy Compd 848:155795. https://doi.org/10.1016/j.jallcom.2020.155795

    Article  Google Scholar 

  13. Kopayev AV, Mokljak VV, Gasyuk IM, Yaremiy IP, Kozub VV (2015) Structure ordering in Mg–Zn ferrite nanopowders obtained by the method of sol–gel autocombustion. Solid State Phenom 230:114–119. https://doi.org/10.4028/www.scientific.net/ssp.230.114

    Article  Google Scholar 

  14. Maity G, Maji P, Sain S, Das S, Kar T, Pradhan SK (2019) Microstructure, optical and electrical characterizations of nanocrystalline ZnAl2O4 spinel synthesized by mechanical alloying: Effect of sintering on microstructure and properties. Physica E 108:411–420. https://doi.org/10.1016/j.physe.2018.10.024

    CAS  Article  Google Scholar 

  15. Manikandan V, Singh M, Yadav BC, Denardin JC (2018) Fabrication of lithium substituted copper ferrite (Li-CuFe2O4) thin film as an efficient gas sensor at room temperature. J Sci 3(2):145–150. https://doi.org/10.1016/j.jsamd.2018.03.008

    Article  Google Scholar 

  16. Manikandan V, Kim J-H, Mirzaei A, Kim SS, Vigneselvan S, Singh M, Chandrasekaran J (2019) Effect of temperature on gas sensing properties of lithium (Li) substituted (NiFe2O4) nickel ferrite thin film. J Mol Struct 1177:485–490. https://doi.org/10.1016/j.molstruc.2018.09.085

    CAS  Article  Google Scholar 

  17. Mondal RA, Murty BS, Murthy VRK (2014) Maxwell-Wagner polarization in grain boundary segregated NiCuZn ferrite. Curr Appl Phys 14(12):1727–1733. https://doi.org/10.1016/j.cap.2014.10.005

    Article  Google Scholar 

  18. Ni Q, Sun L, Cao E, Hao W, Zhang Y, Ju L (2020) Structural, magnetic and dielectric properties of (Li1+, Al3+) co-doped Ni0.5Zn0.5Fe2O4 ferrite ceramics prepared by the sol-gel auto-combustion method. Current Applied Physics, 20(9), 1019–1025. https://doi.org/10.1016/j.cap.2020.06.012

  19. Ostafijchuk BK, Bushkova VS, Moklyak VV, lnitsky RV (2015) Synthesis and Magnetic Microstructure of Nanoparticles of Zinc-Substituted Magnesium Ferrites. Ukrainian Journal of Physics, 60(12), 1234–1242. https://doi.org/10.15407/ujpe60.12.1234

  20. Ostafiychuk BK, Gasyuk IM, Kaykan LS, Uhorchuk VV, Yakubovskiy PP, Tsap VA, Kaykan YS (2016) Temperature—Frequency Dependences of Dielectric Constants of Magnesium-Substituted Lithium Ferrite. Metallofizika I Noveishie Tekhnologii, 36(1):89–102. https://doi.org/10.15407/mfint.36.01.0089https://doi.org/10.1021/cm011219v

  21. Ostafiychuk BK, Kaykan LS, Kaykan JS, Deputat BY, Shevchuk OV (2017) Composition, microstructure, and electrical properties control of the powders synthesized by sol–gel auto-combustion method using citric acid as the fuel. Nanoscale Research Letters, 12(1). https://doi.org/10.1186/s11671-017-1976-1

  22. Patel CK, Solanki NP, Singh C, Jotania RB, Chauhan CC, Kulkarni SD, Shirsath SE (2017) Structural phases, magnetic properties and Maxwell–Wagner type relaxation of CoFe2O4/Sr2Co2Fe12O22 ferrite composites. Materials Res Express 4(7):076105. https://doi.org/10.1088/2053-1591/aa7699

    CAS  Article  Google Scholar 

  23. Patil RP, Hankare PP, Garadkar KM, Sasikala R (2012) Effect of sintering temperature on structural, magnetic properties of lithium chromium ferrite. J Alloy Compd 523:66–71. https://doi.org/10.1016/j.jallcom.2012.01.025

    CAS  Article  Google Scholar 

  24. Poudel TP, Rai BK, Yoon S, Guragain D, Neupane D, Mishra SR (2019) The effect of gadolinium substitution in inverse spinel nickel ferrite: Structural, Magnetic, and Mössbauer study. J Alloy Compd 802:609–619. https://doi.org/10.1016/j.jallcom.2019.06.201

    CAS  Article  Google Scholar 

  25. Sartaj Aziz H, Ali Khan R, Shah F, Ismail B, Nisar J, Mujtaba Shah S, Rahim A, Rahman Khan A (2019) Improved electrical, dielectric and magnetic properties of Al-Sm co-doped NiFe2O4 spinel ferrites nanoparticles. Mater Sci Eng, B 243:47–53. https://doi.org/10.1016/j.mseb.2019.03.021

    CAS  Article  Google Scholar 

  26. Saxena N, Kuanr BK, Zaidi ZH, Srivastava GP (1991) Effect of aluminium substitution on electric, magnetic, and microwave properties of LiTi ferrite. Physica Status Solidi (a) 127(1):231–242. https://doi.org/10.1002/pssa.2211270126

    CAS  Article  Google Scholar 

  27. Sijo AK, Dutta DP (2018) Size-dependent magnetic and structural properties of CoCrFeO4 nano-powder prepared by solution self-combustion. J Magn Magn Mater 451:450–453. https://doi.org/10.1016/j.jmmm.2017.11.092

    CAS  Article  Google Scholar 

  28. Sijo AK, Jha VK, Dutta DP (2020) Structure and cation distribution in superparamagnetic NiCrFeO4 nanoparticles using Mössbauer study. J Magn Magn Mater 497:166047. https://doi.org/10.1016/j.jmmm.2019.166047

    CAS  Article  Google Scholar 

  29. Soman VV, Nanoti VM, Kulkarni DK (2013) Dielectric and magnetic properties of Mg–Ti substituted barium hexaferrite. Ceram Int 39(5):5713–5723. https://doi.org/10.1016/j.ceramint.2012.12.089

    CAS  Article  Google Scholar 

  30. Zaki HM, AL-Heniti SH, Aljwiher MM (2020) Synthesis, structural, magnetic and dielectric studies of aluminum substituted cobalt-copper ferrite. Physica B 597:412382. https://doi.org/10.1016/j.physb.2020.412382

Download references

Acknowledgements

The authors acknowledge faculty of Physical Engineering, Igor Sikorsky Kyiv Polytechnic Institute National Technical University of Ukraine for X-ray measurements, Faculty of Physics and Technology, Vasyl Stefanyk Precarpathian National University, Ukraine for Mössbauer measurements.

Author information

Affiliations

Authors

Corresponding author

Correspondence to L. S. Kaykan.

Ethics declarations

Conflict of interest

On behalf of all the authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kaykan, L.S., Sijo, A.K., Mazurenko, J.S. et al. Influence of the preparation method and aluminum ion substitution on the structure and electrical properties of lithium–iron ferrites. Appl Nanosci (2021). https://doi.org/10.1007/s13204-021-01691-0

Download citation

Keywords

  • Nanoparticles
  • Sol–gel
  • Spinel ferrite
  • X-ray diffraction
  • Electrical properties
  • Dielectric constant