Antimicrobial composites of nanoparticles generated by gamma irradiation supported in clinoptilolite-rich tuff

Abstract

In developing countries, rates of hydric illness in children are high because of the consumption of non-potable water. Therefore, it is important to investigate new methodologies to diminish microorganisms’ concentration in the water that is used in rural areas for drinking. Microbicide agents with a base of natural zeolites can be an alternative to water disinfection instead of using other kinds of disinfectants that produce by-products. Hence, the synthesis and characterization of metallic or oxide-metallic nanoparticles-natural zeolite composites to evaluate the antimicrobial activity in front of Salmonella typhimurium and Candida albicans in this work were investigated. The natural zeolite was in contact with salt solutions of Ag, Cu, or Zn to obtain the modified natural zeolites, and they were then gamma irradiated to generate the nanoparticles. The samples were characterized by different techniques. The Salmonella typhimurium and Candida albicans were suspended in distilled water and put in contact with the composites at different times. The kinetic of the cellular decay was obtained using the Chick model. The chemical species of the nanoparticles obtained were Ag, Cu2O, and ZnO. The kinetic parameter of the cell decay of both Salmonella typhimurium and Candida albicans is the biggest for silver nanoparticles-natural zeolite composite (Z-NpsAgγ). Between two independent experiments of the cellular decay, differences in the k values were observed. The antimicrobial activity of these composites depends on the characteristics of each microorganism, the mass of the composite, the content of the metallic or oxido-metallic nanoparticles in the natural zeolites, their distribution on the zeolitic material surfaces, and the chemical species obtained during the gamma irradiation. The Z-NpsAgγ could be an alternative for water potabilization.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Abidin AZ, Abu-Bakar NHH, Ng EP, Tan WL (2017) Rapid degradation of methyl orange by Ag doped zeolite X in the presence of borohydride. J Taibah Univ Sci 11:1070–1079. https://doi.org/10.1016/j.jtusci.2017.06.004

    Article  Google Scholar 

  2. Alswat AA, Bin AM, Saleh TA (2017) Preparation and characterization of zeolite/zinc oxide-copper oxide nanocomposite: antibacterial activities. Colloids Interface Sci Commun 16:19–24. https://doi.org/10.1016/j.colcom.2016.12.003

    CAS  Article  Google Scholar 

  3. Alver BE, Sakizci M, Yörükoǧullari E (2010) Investigation of clinoptilolite rich natural zeolites from Turkey: a combined XRF, TG/DTG, DTA and DSC study. J Therm Anal Calorim 100:19–26. https://doi.org/10.1007/s10973-009-0118-0

    CAS  Article  Google Scholar 

  4. Ambrozova P, Kynicky J, Urubek T, Nguyen VD (2017) Synthesis and modification of clinoptilolite. Molecules 22:1–13. https://doi.org/10.3390/molecules22071107

    CAS  Article  Google Scholar 

  5. Amini K, Kraatz HB (2014) Recent advances and developments in monitoring biological agents in water samples. Rev Environ Sci Biotechnol 14:23–48. https://doi.org/10.1007/s11157-014-9351-5

    Article  Google Scholar 

  6. Ashbolt NJ (2015) Microbial contamination of drinking water and human health from community water systems. Curr Environ Heal Rep 2:95–106. https://doi.org/10.1007/s40572-014-0037-5

    CAS  Article  Google Scholar 

  7. Ateia M, Alalm MG, Awfa D et al (2020) Modeling the degradation and disinfection of water pollutants by photocatalysts and composites: a critical review. Sci Total Environ 698:134197. https://doi.org/10.1016/j.scitotenv.2019.134197

    CAS  Article  Google Scholar 

  8. Batistela VR, Fogaça LZ, Fávaro SL et al (2017) ZnO supported on zeolites: photocatalyst design, microporosity and properties. Colloids Surf A Physicochem Eng Asp 513:20–27. https://doi.org/10.1016/j.colsurfa.2016.11.023

    CAS  Article  Google Scholar 

  9. Belloni J (2006) Nucleation, growth and properties of nanoclusters studied by radiation chemistry: application to catalysis. Catal Today 113:141–156. https://doi.org/10.1016/j.cattod.2005.11.082

    CAS  Article  Google Scholar 

  10. Belloni J, Marignier JL, Mostafavi M (2018) Mechanisms of metal nanoparticles nucleation and growth studied by radiolysis. Radiat Phys Chem. https://doi.org/10.1016/j.radphyschem.2018.08.001

    Article  Google Scholar 

  11. Bertrand JC, Caumette P, Lebaron P, et al (2015) Environmental microbiology: fundamentals and applications. Microb Ecol. https://doi.org/10.1007/978-94-017-9118-2

  12. Biesinger MC (2017) Advanced analysis of copper X-ray photoelectron spectra. Surf Interface Anal 49:1325–1334. https://doi.org/10.1002/sia.6239

    CAS  Article  Google Scholar 

  13. Bordbar M, Sharifi-Zarchi Z, Khodadadi B (2017) Green synthesis of copper oxide nanoparticles/clinoptilolite using Rheum palmatum L. root extract: high catalytic activity for reduction of 4-nitro phenol, rhodamine B, and methylene blue. J Sol-Gel Sci Technol 81:724–733. https://doi.org/10.1007/s10971-016-4239-1

    CAS  Article  Google Scholar 

  14. Boruban C, Nalbant Esenturk E (2017) Synthesis of CuO nanostructures on zeolite-Y and investigation of their CO2 adsorption properties. J Mater Res 32:3669–3678. https://doi.org/10.1557/jmr.2017.337

    CAS  Article  Google Scholar 

  15. Bouzourâa MB, Naciri AE, Moadhen A et al (2016) Effects of silicon porosity on physical properties of ZnO films. Mater Chem Phys 175:233–240. https://doi.org/10.1016/j.matchemphys.2016.03.026

    CAS  Article  Google Scholar 

  16. Cheon JY, Kim SJ, Rhee YH et al (2019) Shape-dependent antimicrobial activities of silver nanoparticles. Int J Nanomed 14:2773–2780. https://doi.org/10.2147/IJN.S196472

    CAS  Article  Google Scholar 

  17. Clifford DC, Castano CE, Rojas JV (2017) Supported transition metal nanomaterials: nanocomposites synthesized by ionizing radiation. Radiat Phys Chem 132:52–64. https://doi.org/10.1016/j.radphyschem.2016.12.001

    CAS  Article  Google Scholar 

  18. Copcia VE, Luchian C, Dunca S et al (2011) Antibacterial activity of silver-modified natural clinoptilolite. J Mater Sci 46:7121–7128. https://doi.org/10.1007/s10853-011-5635-0

    CAS  Article  Google Scholar 

  19. De la Rosa-Gómez I, Olguín MT, Alcántara D (2008) Antibacterial behavior of silver-modified clinoptilolite-heulandite rich tuff on coliform microorganisms from wastewater in a column system. J Environ Manage 88:853–863. https://doi.org/10.1016/j.jenvman.2007.04.005

    CAS  Article  Google Scholar 

  20. Demirci S, Ustaoǧlu Z, Yilmazer GA et al (2014) Antimicrobial properties of zeolite-X and zeolite-A ion-exchanged with silver, copper, and zinc against a broad range of microorganisms. Appl Biochem Biotechnol 172:1652–1662. https://doi.org/10.1007/s12010-013-0647-7

    CAS  Article  Google Scholar 

  21. Dizaj SM, Lotfipour F, Barzegar-Jalali M et al (2014) Antimicrobial activity of the metals and metal oxide nanoparticles. Mater Sci Eng C 44:278–284. https://doi.org/10.1016/j.msec.2014.08.031

    CAS  Article  Google Scholar 

  22. Dong Y, Lin H, He Y (2017) Correlation between physicochemical properties of modified clinoptilolite and its performance in the removal of ammonia-nitrogen. Environ Monit Assess 189:1–10. https://doi.org/10.1007/s10661-017-5806-9

    CAS  Article  Google Scholar 

  23. Du BD, Van PhuD, Quoc LA, Hien NQ (2017) Synthesis and investigation of antimicrobial activity of Cu2O nanoparticles/zeolite. J Nanopart 2017:1–6. https://doi.org/10.1155/2017/7056864

    CAS  Article  Google Scholar 

  24. Favvas EP, Tsanaktsidis CG, Sapalidis AA et al (2016) Clinoptilolite, a natural zeolite material: structural characterization and performance evaluation on its dehydration properties of hydrocarbon-based fuels. Microporous Mesoporous Mater 225:385–391. https://doi.org/10.1016/j.micromeso.2016.01.021

    CAS  Article  Google Scholar 

  25. Feng L, Zhang C, Gao G, Cui D (2012) Facile synthesis of hollow Cu2O octahedral and spherical nanocrystals and their morphology-dependent photocatalytic properties. Nanoscale Res Lett 7:1–10. https://doi.org/10.1186/1556-276X-7-276

    Article  Google Scholar 

  26. Flores-Rojas GG, López-Saucedo F, Bucio E (2018) Gamma-irradiation applied in the synthesis of metallic and organic nanoparticles: a short review. Radiat Phys Chem 169:107962. https://doi.org/10.1016/j.radphyschem.2018.08.011

    CAS  Article  Google Scholar 

  27. Ganguly P, Byrne C, Breen A, Pillai SC (2018) Antimicrobial activity of photocatalysts: fundamentals, mechanisms, kinetics and recent advances. Appl Catal B Environ 225:51–75. https://doi.org/10.1016/j.apcatb.2017.11.018

    CAS  Article  Google Scholar 

  28. Hussain HM, Mohammed AAK (2019) Preparation and characterization of mordenite zeolite from Iraqi Sand. IOP Conf Ser Mater Sci Eng 518. https://doi.org/10.1088/1757-899X/518/6/062002

  29. Jafari MJ, Zendehdel R, Rafieepour A et al (2020) Comparison of Y and ZSM-5 zeolite modified with magnetite nanoparticles in removal of hydrogen sulfide from air. Int J Environ Sci Technol 17:187–194. https://doi.org/10.1007/s13762-019-02348-w

    CAS  Article  Google Scholar 

  30. Jiao W (2016) Facile synthesis of silver nanoparticles deposited on a calcium silicate hydrate composite as an efficient bactericidal agent. RSC Adv 6:112931–112938. https://doi.org/10.1039/c6ra24265k

    CAS  Article  Google Scholar 

  31. Karimiyan A, Najafzadeh H, Ghorbanpour M, Hossein S (2015) Antifungal effect of magnesium oxide, zinc oxide, silicon oxide and copper oxide nanoparticles against Candida albicans Hekmati-Moghaddam. Zahedan J Res Med Sci 17:25–27. https://doi.org/10.17795/zjrms-2179

  32. Khodadadi B, Bordbar M, Yeganeh-Faal A, Nasrollahzadeh M (2017) Green synthesis of Ag nanoparticles/clinoptilolite using Vaccinium macrocarpon fruit extract and its excellent catalytic activity for reduction of organic dyes. J Alloys Compd 719:82–88. https://doi.org/10.1016/j.jallcom.2017.05.135

    CAS  Article  Google Scholar 

  33. Koopman JA, Marshall JM, Bhatiya A et al (2015) Inhibition of salmonella enterica biofilm formation using small- Molecule adenosine mimetics. Antimicrob Agents Chemother 59:76–84. https://doi.org/10.1128/AAC.03407-14

    CAS  Article  Google Scholar 

  34. Korkuna O, Leboda R, Skubiszewska-Zieba J, Vrublevska T, Gunko VM, Ryczkowski J (2006) Structural and physicochemical properties of natural zeolites: clinoptilolite and mordenite. Microporous Mesoporous Mater 87:243–254. https://doi.org/10.1016/j.micromeso.2005.08.002

    CAS  Article  Google Scholar 

  35. L’Annunziata MF (2007) Introduction: radioactivity and our well-being. Radioactivity 1–45. https://doi.org/10.1016/b978-044452715-8.50003-7

  36. Lanje AS, Sharma SJ, Pode RB (2010) Synthesis of silver nanoparticles: a safer alternative to conventional antimicrobial and antibacterial agents. J Chem Pharm Res 2:478–483

    CAS  Google Scholar 

  37. Lara HH, Urbina DGR, Pierce C et al (2015) Effect of silver nanoparticles on Candida albicans biofilms : an ultrastructural study. J Nanobiotechnol 1–12. https://doi.org/10.1186/s12951-015-0147-8

  38. León ER, Rodríguez EL, Beas CR et al (2016) Study of methylene blue degradation by gold nanoparticles synthesized within natural zeolites. J Nanomater 2016:9541683

    Article  Google Scholar 

  39. Li Y, Yu J (2014) New stories of zeolite structures: their descriptions, determinations, predictions, and evaluations. Chem Rev 114:7268–7316. https://doi.org/10.1021/cr500010r

    CAS  Article  Google Scholar 

  40. Li Y, Li L, Yu J (2017) Applications of zeolites in sustainable chemistry. Chem 3:928–949. https://doi.org/10.1016/j.chempr.2017.10.009

    CAS  Article  Google Scholar 

  41. Lingaraju K, Raja Naika H, Manjunath K et al (2016) Biogenic synthesis of zinc oxide nanoparticles using Ruta graveolens (L.) and their antibacterial and antioxidant activities. Appl Nanosci 6:703–710. https://doi.org/10.1007/s13204-015-0487-6

    CAS  Article  Google Scholar 

  42. Liu C, Zhang R, Wei S et al (2015) Selective removal of H2S from biogas using a regenerable hybrid TiO2/zeolite composite. Fuel 157:183–190. https://doi.org/10.1016/j.fuel.2015.05.003

    CAS  Article  Google Scholar 

  43. Mahmoodi-Meimand M, Javid N, Malakootian M (2020) Adsorption of sulfur dioxide on clinoptilolite/nano iron oxide and natural adsorption of sulfur dioxide on clinoptilolite/nano iron oxide and natural clinoptilolite. Health Scope. https://doi.org/10.5812/jhealthscope.69158

    Article  Google Scholar 

  44. Mansouri N, Rikhtegar N, Ahmad Panahi H et al (2013) Porosity, characterization and structural properties of natural zeolite—clinoptilolite—as a sorbent. Environ Prot Eng 39:139–152. https://doi.org/10.5277/EPE130111

    CAS  Article  Google Scholar 

  45. Moradi M, Karimzadeh R, Moosavi ES (2018) Modified and ion exchanged clinoptilolite for the adsorptive removal of sulfur compounds in a model fuel: new adsorbents for desulfurization. Fuel 217:467–477. https://doi.org/10.1016/j.fuel.2017.12.095

    CAS  Article  Google Scholar 

  46. Olorode OA, Okpokwasli GC (2012) The efficacy of disinfectants on abattoirs’ Candida albicans isolates in Niger Delta region. F1000 Res 1:1–8. https://doi.org/10.12688/f1000research.1-20.v1

  47. Panayotova MI, Mintcheva NN, Gemishev OT et al (2018) Preparation and antimicrobial properties of silver nanoparticles supported by natural zeolite clinoptilolite. Bulg Chem Commun 50:211–218

    Google Scholar 

  48. Pérez-González NK, Legorreta-García F, Díaz-Guzmán D, Vargas-Ramírez M, Reyes-Cruz VE, Flores-Zamora MI (2020) Determinación de las Características Físico-Químicas de una Zeolita Natural (Determination of physical-chemical characteristics of a natural zeolite). Pädi 8:14–18. https://doi.org/10.29057/icbi.v8iEspecial.6297

  49. Polychroniadis EK, Oral AY, Ozer M (2013) International multidisciplinary microscopy congress. In: Proceedings of InterM, Antalya, Turkey. Springer

  50. Rodríguez-Méndez BG, López-Callejas R, Olguín MT et al (2017) Growth of Ag particles from Ag-zeolite by pulsed discharges in water and their antibacterial activity. Microporous Mesoporous Mater 244:235–243. https://doi.org/10.1016/j.micromeso.2016.10.038

    CAS  Article  Google Scholar 

  51. Rossainz-Castro LG, De-La-Rosa-Gómez I, Olguín MT, Alcántara-Díaz D (2016) Comparison between silver- and copper-modified zeolite-rich tuffs as microbicide agents for Escherichia coli and Candida albicans. J Environ Manage 183:763–770. https://doi.org/10.1016/j.jenvman.2016.09.034

    CAS  Article  Google Scholar 

  52. Salama T, Ali IO (2016) Novel synthesis of nay zeolite from rice husk silica: modification with Zno and Zns for antibacterial application. Chem Sci J 07:1–9. https://doi.org/10.4172/2150-3494.1000118

    CAS  Article  Google Scholar 

  53. Sareban Z, Javanbakht V (2017) Preparation and characterization of a novel nanocomposite of clinoptilolite/maghemite/chitosan/urea for manganese removal from aqueous solution. Korean J Chem Eng 34:2886–2900. https://doi.org/10.1007/s11814-017-0216-9

    CAS  Article  Google Scholar 

  54. Sellam A, Whiteway M (2016) Recent advances on Candida albicans biology and virulence. F1000Res 5:2582. https://doi.org/10.12688/f1000research.9617.1

  55. Shameli K, Bin AM, Yunus WMZW et al (2010) Synthesis of silver/montmorillonite nanocomposites using γ-irradiation. Int J Nanomed 5:1067–1077. https://doi.org/10.2147/IJN.S15033

    CAS  Article  Google Scholar 

  56. Sharma P, Pant S, Poonia P et al (2018) Green synthesis of colloidal copper nanoparticles capped with Tinospora cordifolia and its application in catalytic degradation in textile dye: an ecologically sound approach. J Inorg Organomet Polym Mater 28:2463–2472. https://doi.org/10.1007/s10904-018-0933-5

    CAS  Article  Google Scholar 

  57. Shaw R, Sharma R, Tiwari S, Tiwari SK (2016) Surface engineered zeolite: an active interface for rapid adsorption and degradation of toxic contaminants in water. ACS Appl Mater Interfaces 8:12520–12527. https://doi.org/10.1021/acsami.6b01754

    CAS  Article  Google Scholar 

  58. Sheikh N, Akhavan A, Kassaee MZ (2009) Synthesis of antibacterial silver nanoparticles by γ-irradiation. Phys E Low Dimensional Syst Nanostruct 42:132–135. https://doi.org/10.1016/j.physe.2009.09.013

    CAS  Article  Google Scholar 

  59. Shuai-Cheng W, Ben-Dong F, Xiu-Ling C et al (2016) Subinhibitory concentrations of phloretin repress the virulence of Salmonella typhimurium and protect against Salmonella typhimurium infection. Antonie van Leeuwenhoek Int J Gen Mol Microbiol 109:1503–1512. https://doi.org/10.1007/s10482-016-0752-z

    CAS  Article  Google Scholar 

  60. Siddiqi KS, ur Rahman A, Tajuddin, Husen A (2018) Properties of zinc oxide nanoparticles and their activity against microbes. Nanoscale Res Lett 13. https://doi.org/10.1186/s11671-018-2532-3

  61. Singh S, Bharti A, Meena VK (2015) Green synthesis of multi-shaped silver nanoparticles: optical, morphological and antibacterial properties. J Mater Sci Mater Electron 26:3638–3648. https://doi.org/10.1007/s10854-015-2881-y

    CAS  Article  Google Scholar 

  62. Ullah R, Liu C, Panezai H et al (2019) Controlled crystal phase and particle size of loaded-TiO2 using clinoptilolite as support via hydrothermal method for degradation of crystal violet dye in aqueous solution. Arab J Chem 13:4092–4101. https://doi.org/10.1016/j.arabjc.2019.06.011

    CAS  Article  Google Scholar 

  63. Vanaja M, Gnanajobitha G, Paulkumar K et al (2013) Phytosynthesis of silver nanoparticles by Cissus quadrangularis: influence of physicochemical factors. J Nanostruct Chem 3:17. https://doi.org/10.1186/2193-8865-3-17

    Article  Google Scholar 

  64. Vergara-Figueroa J, Alejandro-Martín S, Pesenti H, Cerda F, Fernández-Pérez A, Gacitúa W (2019) Obtaining nanoparticles of Chilean natural zeolite and its ion exchange with copper salt (Cu2+) for antibacterial applications. Materials (Basel) 12:2202. https://doi.org/10.3390/ma12132202

    CAS  Article  Google Scholar 

  65. Yu B, Wen Y, Yang X, Cai X (2019) Synthesis of ZnO–Au composite microspheres by one-pot polyol method and its application as a photo-catalyst. J Mater Sci Mater Electron 30:855–861. https://doi.org/10.1007/s10854-018-0356-7

    CAS  Article  Google Scholar 

  66. Zahmakiran M, Durap F, Özkar S (2010) Zeolite confined copper(0) nanoclusters as cost-effective and reusable catalyst in hydrogen generation from the hydrolysis of ammonia-borane. Int J Hydrogen Energ 35:187–197. https://doi.org/10.1016/j.ijhydene.2009.10.055

    CAS  Article  Google Scholar 

  67. Zahmakıran M, Akbayrak S, Salim C, Derya C (2011) Zeolite framework stabilized nickel (0) nanoparticles : active and long-lived catalyst for hydrogen generation from the hydrolysis of ammonia-borane and sodium borohydride. Catal Today 170:76–84. https://doi.org/10.1016/j.cattod.2010.09.022

    CAS  Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the financial assistance to project No. 254665 from the Mexican National Council for Science and Technology (CONACyT) and for the scholarship 553468; to ININ, for their support in instrumental analysis for the zeolitic material: TEM (I. Martínez), SEM and EDS (J. Pérez), XRD (P. López and L. Carapia), XPS (R. Basurto), BET (E. Morales) and neutron activation analysis NAA (J. Vidal), as well as irradiation of samples (D. Ortiz).

Author information

Affiliations

Authors

Corresponding author

Correspondence to M. T. Olguín.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1647 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Martínez-Vieyra, C., Gutiérrez-Segura, E., López-Tellez, G. et al. Antimicrobial composites of nanoparticles generated by gamma irradiation supported in clinoptilolite-rich tuff. Appl Nanosci (2021). https://doi.org/10.1007/s13204-021-01687-w

Download citation

Keywords

  • Metallic and oxide metallic nanoparticles
  • Microorganism
  • Microbial mortality
  • Natural zeolites