Efficient and easily retrievable green modified carboxymethyl cellulose coated A. indica stem bark encapsulated metal nanoparticles towards the reduction of o-nitrophenol and azo dyes

Abstract

A new type of economically feasible and environmental-friendly Azadirachta indica stem bark (AIB)/sulfated carboxymethyl cellulose (AIB/S-CMC) based bio-composite catalysts decorated with efficient zero-valent metal nanoparticles were fabricated through an easy and fast chemical approach. First of all, sodium salt of carboxymethyl cellulose (CMC) was modified into sulfated-CMC (S-CMC) by a non-toxic sulfating agent followed by dip coating on AIB pellets. The AIB/S-CMC bio-composites decorated with M0 = Ag, Co, Cu, Ni, Ag-Co, and Cu-Co(M0-AIB/S-CMC) were analyzed by different techniques such as FE-SEM, EDAX, UV–Vis, XRD, and FTIR, which confirmed that the metal nanoprticles were successfully synthesized and well dispersed on the surface of fabricated bio-composite catalysts. The M0-AIB/S-CMC bio-composites were then subjected to extensive evaluation and investigation of its potential ability as efficient catalyst for reduction of 2-nitrophenol (2-NP) and toxic dyes. The results demonstrated that Co-AIB/S-CMC bio-composite catalyst exhibits good stabilities and catalytic activities for the reduction of 2-NP and azo dyes (acid red and methyl orange). Despite of having a good catalytic ability, Co-AIB/S-CMC bio-composite catalysts could be easily recoverable from aqueous media after completion of the reaction simply by pulling the pellets from the reaction matrix.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. Atarod M, Nasrollahzadeh M, Mohammad Sajadi S (2016) Green synthesis of Pd/RGO/Fe3O4 nanocomposite using Withania coagulans leaf extract and its application as magnetically separable and reusable catalyst for the reduction of 4-nitrophenol. J Colloid Interface Sci 465:249–258. https://doi.org/10.1016/j.jcis.2015.11.060

    CAS  Article  Google Scholar 

  2. Azzam EMS, Solyman SM, Abd-Elaal AA (2016) Fabrication of chitosan/Ag-nanoparticles/clay nanocomposites for catalytic control on oxidative polymerization of aniline. Colloids Surfaces A Physicochem Eng Asp 510:221–230. https://doi.org/10.1016/j.colsurfa.2016.06.015

    CAS  Article  Google Scholar 

  3. Bagheri H, Hajian A, Rezaei M, Shirzadmehr A (2017) Composite of Cu metal nanoparticles-multiwall carbon nanotubes-reduced graphene oxide as a novel and high performance platform of the electrochemical sensor for simultaneous determination of nitrite and nitrate. J Hazard Mater 324:762–772. https://doi.org/10.1016/j.jhazmat.2016.11.055

    CAS  Article  Google Scholar 

  4. Barakat NAM, Kim B, Park SJ et al (2009) Cobalt nanofibers encapsulated in a graphite shell by an electrospinning process. J Mater Chem 19:7371. https://doi.org/10.1039/b904669k

    CAS  Article  Google Scholar 

  5. Barati Darband G, Aliofkhazraei M, Sabour Rouhaghdam A (2017) Nickel nanocones as efficient and stable catalyst for electrochemical hydrogen evolution reaction. Int J Hydrogen Energy 42:14560–14565. https://doi.org/10.1016/j.ijhydene.2017.04.120

    CAS  Article  Google Scholar 

  6. Bhandari R, Knecht MR (2011) Effects of the material structure on the catalytic activity of peptide-templated Pd nanomaterials. ACS Catal 1:89–98. https://doi.org/10.1021/cs100100k

    CAS  Article  Google Scholar 

  7. Bukzem AL, Signini R, dos Santos DM et al (2016) Optimization of carboxymethyl chitosan synthesis using response surface methodology and desirability function. Int J Biol Macromol 85:615–624. https://doi.org/10.1016/j.ijbiomac.2016.01.017

    CAS  Article  Google Scholar 

  8. Chen J, Sun X, Lin L et al (2017) Adsorption removal of o-nitrophenol and p-nitrophenol from wastewater by metal–organic framework Cr-BDC. Chin J Chem Eng 25:775–781. https://doi.org/10.1016/j.cjche.2016.10.014

    CAS  Article  Google Scholar 

  9. Chouhan N, Ameta R, Meena RK (2017) Biogenic silver nanoparticles from Trachyspermum ammi (Ajwain) seeds extract for catalytic reduction of p-nitrophenol to p-aminophenol in excess of NaBH4. J Mol Liq 230:74–84. https://doi.org/10.1016/j.molliq.2017.01.003

    CAS  Article  Google Scholar 

  10. Daniel MC (2004) Gold nanoparticles: assembly, supramolecularchemistry, quantum-size-related properties, and applications toward. Chem Rev 104:293–346. https://doi.org/10.1021/cr030698

    CAS  Article  Google Scholar 

  11. Devmurari VP, Jivani NP (2010) Hepatoprotective activity of methanolic and aqueous extracts of Azadirchata indica leaves. Int J PharmTech Res 2:1037–1040

    Google Scholar 

  12. Faghihi K, Shabanian M (2011) Thermal and optical properties of silver-polyimide nanocomposite based on diphenyl sulfone moieties in the main chain. J Chil Chem Soc 56:665–667. https://doi.org/10.4067/S0717-97072011000200009

    CAS  Article  Google Scholar 

  13. Fan L, Zhou X, Wu P et al (2014) Preparation of carboxymethyl cellulose sulfates and its application as anticoagulant and wound dressing. Int J Biol Macromol 66:245–253. https://doi.org/10.1016/j.ijbiomac.2014.02.040

    CAS  Article  Google Scholar 

  14. Fu Y, Huang T, Jia B et al (2017) Reduction of nitrophenols to aminophenols under concerted catalysis by Au/g-C3N4 contact system. Appl Catal B Environ 202:430–437. https://doi.org/10.1016/j.apcatb.2016.09.051

    CAS  Article  Google Scholar 

  15. Gao X, Zhao H, Liu Y et al (2019) Facile synthesis of PdNiP/Reduced graphene oxide nanocomposites for catalytic reduction of 4-nitrophenol. Mater Chem Phys 222:391–397. https://doi.org/10.1016/j.matchemphys.2018.10.037

    CAS  Article  Google Scholar 

  16. Gautam V, Srivastava A, Singh KP, Yadav VL (2016) Vibrational and gravimetric analysis of polyaniline/polysaccharide composite materials. Polym Sci Ser A 58:206–219. https://doi.org/10.1134/S0965545X16020085

    CAS  Article  Google Scholar 

  17. Guo P, Tang L, Tang J et al (2016) Catalytic reduction–adsorption for removal of p-nitrophenol and its conversion p-aminophenol from water by gold nanoparticles supported on oxidized mesoporous carbon. J Colloid Interface Sci 469:78–85. https://doi.org/10.1016/j.jcis.2016.01.063

    CAS  Article  Google Scholar 

  18. Gupta S, Kataria M, Gupta P et al (2004) Protective role of extracts of neem seeds in diabetes caused by streptozotocin in rats. J Ethnopharmacol 90:185–189. https://doi.org/10.1016/j.jep.2003.09.024

    CAS  Article  Google Scholar 

  19. Hebeish A, Higazy A, El-Shafei A, Sharaf S (2010) Synthesis of carboxymethyl cellulose (CMC) and starch-based hybrids and their applications in flocculation and sizing. Carbohydr Polym 79:60–69. https://doi.org/10.1016/j.carbpol.2009.07.022

    CAS  Article  Google Scholar 

  20. Heidarpour F, Ghani WAK, Ahmadun F-R et al (2010) Nano silver-coated polypropylene water filter: II. evaluation of antimicrobial efficiency. Dig J Nanomater Biostruct 5:797–804

    Google Scholar 

  21. Hernández-Rodríguez MA, Goya MC, Arévalo MC et al (2016) Carbon supported Ag and Ag–Co catalysts tolerant to methanol and ethanol for the oxygen reduction reaction in alkaline media. Int J Hydrogen Energy 41:19789–19798. https://doi.org/10.1016/j.ijhydene.2016.07.188

    CAS  Article  Google Scholar 

  22. Hussain S, Mohammed Ali HSH, Khan SA et al (2020) Synthesis of biomass-supported CuNi zero-valent nanoparticles through wetness co-impregnation method for the removal of carcinogenic dyes and nitroarene. Green Process Synth 9:237–247. https://doi.org/10.1515/gps-2020-0028

    Article  Google Scholar 

  23. Ismail M, Khan MI, Khan SB et al (2018a) Catalytic reduction of picric acid, nitrophenols and organic azo dyes via green synthesized plant supported Ag nanoparticles. J Mol Liq 268:87–101. https://doi.org/10.1016/j.molliq.2018.07.030

    CAS  Article  Google Scholar 

  24. Ismail M, Khan MI, Khan SB et al (2018b) Green synthesis of plant supported Cu Ag and Cu Ni bimetallic nanoparticles in the reduction of nitrophenols and organic dyes for water treatment. J Mol Liq 260:78–91. https://doi.org/10.1016/j.molliq.2018.03.058

    CAS  Article  Google Scholar 

  25. Jana S, Ghosh S, Nath S et al (2006) Synthesis of silver nanoshell-coated cationic polystyrene beads: a solid phase catalyst for the reduction of 4-nitrophenol. Appl Catal A Gen 313:41–48. https://doi.org/10.1016/j.apcata.2006.07.007

    CAS  Article  Google Scholar 

  26. Kamal T, Khan SB, Asiri AM (2016) Synthesis of zero-valent Cu nanoparticles in the chitosan coating layer on cellulose microfibers: evaluation of azo dyes catalytic reduction. Cellulose 23:1911–1923. https://doi.org/10.1007/s10570-016-0919-9

    CAS  Article  Google Scholar 

  27. Karakas K, Celebioglu A, Celebi M et al (2017) Nickel nanoparticles decorated on electrospun polycaprolactone/chitosan nanofibers as flexible, highly active and reusable nanocatalyst in the reduction of nitrophenols under mild conditions. Appl Catal B Environ 203:549–562. https://doi.org/10.1016/j.apcatb.2016.10.020

    CAS  Article  Google Scholar 

  28. Koodlur Sannegowda L, Reddy KRV, Shivaprasad KH (2014) Stable nano-sized copper and its oxide particles using cobalt tetraamino phthalocyanine as a stabilizer; application to electrochemical activity. RSC Adv 4:11367–11374. https://doi.org/10.1039/C3RA42682C

    CAS  Article  Google Scholar 

  29. Kumar M, Deka S (2014) Multiply twinned AgNi alloy nanoparticles as highly active catalyst for multiple reduction and degradation reactions. ACS Appl Mater Interfaces 6:16071–16081. https://doi.org/10.1021/am503913y

    CAS  Article  Google Scholar 

  30. Kurtan U, Amir M, Yıldız A, Baykal A (2016) Synthesis of magnetically recyclable MnFe2O4 @SiO2 @Ag nanocatalyst: its high catalytic performances for azo dyes and nitro compounds reduction. Appl Surf Sci 376:16–25. https://doi.org/10.1016/j.apsusc.2016.02.120

    CAS  Article  Google Scholar 

  31. Lai M, Liu P, Lin H et al (2016) Interaction between chitosan-based clay nanocomposites and cellulose in a chemical pulp suspension. Carbohydr Polym 137:375–381. https://doi.org/10.1016/j.carbpol.2015.10.099

    CAS  Article  Google Scholar 

  32. Lin Y, Wu S, Li X et al (2018) Microstructure and performance of Z-scheme photocatalyst of silver phosphate modified by MWCNTs and Cr-doped SrTiO3 for malachite green degradation. Appl Catal B Environ 227:557–570. https://doi.org/10.1016/j.apcatb.2018.01.054

    CAS  Article  Google Scholar 

  33. Lin Y, Wu X, Han Y et al (2019) Spatial separation of photogenerated carriers and enhanced photocatalytic performance on Ag3PO4 catalysts via coupling with PPy and MWCNTs. Appl Catal B Environ 258:117969. https://doi.org/10.1016/j.apcatb.2019.117969

    CAS  Article  Google Scholar 

  34. Luo H, Zhao Y, He D et al (2019) Hydroxylamine-facilitated degradation of rhodamine B (RhB) and p-nitrophenol (PNP) as catalyzed by Fe@Fe2O3 core-shell nanowires. J Mol Liq 282:13–22. https://doi.org/10.1016/j.molliq.2019.02.136

    CAS  Article  Google Scholar 

  35. Magdassi S, Bassa A, Vinetsky Y, Kamyshny A (2003) Silver nanoparticles as pigments for water-based ink-jet inks. Chem Mater 15:2208–2217. https://doi.org/10.1021/cm021804b

    CAS  Article  Google Scholar 

  36. Mahabub-Uz-Zaman M, Ahmed NU, Akter R et al (1970) Studies on anti-inflammatory, antinociceptive and antipyretic activities of ethanol extract of Azadirachta indica leaves. Bangladesh J Sci Ind Res 44:199–206. https://doi.org/10.3329/bjsir.v44i2.3672

    Article  Google Scholar 

  37. Mbaya AW, Ibrahim UI, God OT, Ladi S (2010) Toxicity and potential anti-trypanosomal activity of ethanolic extract of Azadirachta indica (Maliacea) stem bark: an in vivo and in vitro approach using Trypanosoma brucei. J Ethnopharmacol 128:495–500. https://doi.org/10.1016/j.jep.2010.01.013

    Article  Google Scholar 

  38. Morales MV, Rocha M, Freire C et al (2017) Development of highly efficient Cu versus Pd catalysts supported on graphitic carbon materials for the reduction of 4-nitrophenol to 4-aminophenol at room temperature. Carbon N Y 111:150–161. https://doi.org/10.1016/j.carbon.2016.09.079

    CAS  Article  Google Scholar 

  39. Nadagouda MN, Varma RS (2007) Synthesis of thermally stable carboxymethyl cellulose/metal biodegradable nanocomposites for potential biological applications. Biomacromol 8:2762–2767. https://doi.org/10.1021/bm700446p

    CAS  Article  Google Scholar 

  40. Nasrollahzadeh M, Akbari R, Issaabadi Z, Sajadi SM (2020) Biosynthesis and characterization of Ag/MgO nanocomposite and its catalytic performance in the rapid treatment of environmental contaminants. Ceram Int 46:2093–2101. https://doi.org/10.1016/j.ceramint.2019.09.191

    CAS  Article  Google Scholar 

  41. Nwachukwu N, Iweala E (2009) Influence of extraction methods on the hepatotoxicity of Azadirachta indica bark extract on albino rats. Glob J Pure Appl Sci. https://doi.org/10.4314/gjpas.v15i3-4.48562

    Article  Google Scholar 

  42. Pelissari FM, Yamashita F, Garcia MA et al (2012) Constrained mixture design applied to the development of cassava starch–chitosan blown films. J Food Eng 108:262–267. https://doi.org/10.1016/j.jfoodeng.2011.09.004

    CAS  Article  Google Scholar 

  43. Pradhan N, Pal A, Pal T (2002) Silver nanoparticle catalyzed reduction of aromatic nitro compounds. Colloids Surfaces A Physicochem Eng Asp 196:247–257. https://doi.org/10.1016/S0927-7757(01)01040-8

    CAS  Article  Google Scholar 

  44. Prakash AO, Tewari RK, Mathur R (1988) Non-hormonal post-coital contraceptive action of neem oil in rats. J Ethnopharmacol 23:53–59. https://doi.org/10.1016/0378-8741(88)90114-6

    CAS  Article  Google Scholar 

  45. Si S, Kotal A, Mandal TK et al (2004) Size-controlled synthesis of magnetite nanoparticles in the presence of polyelectrolytes. Chem Mater 16:3489–3496. https://doi.org/10.1021/cm049205n

    CAS  Article  Google Scholar 

  46. Sithisarn P, Supabphol R, Gritsanapan W (2005) Antioxidant activity of Siamese neem tree (VP1209). J Ethnopharmacol 99:109–112. https://doi.org/10.1016/j.jep.2005.02.008

    Article  Google Scholar 

  47. Upadhyaya L, Singh J, Agarwal V et al (2014) In situ grafted nanostructured ZnO/carboxymethyl cellulose nanocomposites for efficient delivery of curcumin to cancer. J Polym Res 21:550. https://doi.org/10.1007/s10965-014-0550-0

    CAS  Article  Google Scholar 

  48. Vellaichamy B, Prakash P, Thomas J (2018) Synthesis of AuNPs@RGO nanosheets for sustainable catalysis toward nitrophenols reduction. Ultrason Sonochem 48:362–369. https://doi.org/10.1016/j.ultsonch.2018.05.012

    CAS  Article  Google Scholar 

  49. Vijayalakshmi K, Gomathi T, Latha S et al (2016) Removal of copper(II) from aqueous solution using nanochitosan/sodium alginate/microcrystalline cellulose beads. Int J Biol Macromol 82:440–452. https://doi.org/10.1016/j.ijbiomac.2015.09.070

    CAS  Article  Google Scholar 

  50. Vinothini G, Manikandan P, Anandan R, Nagini S (2009) Chemoprevention of rat mammary carcinogenesis by Azadirachta indica leaf fractions: modulation of hormone status, xenobiotic-metabolizing enzymes, oxidative stress, cell proliferation and apoptosis. Food Chem Toxicol 47:1852–1863. https://doi.org/10.1016/j.fct.2009.04.045

    CAS  Article  Google Scholar 

  51. Vio V, Jose Marchant M, Araya E, Kogan M (2017) Metal nanoparticles for the treatment and diagnosis of neurodegenerative brain diseases. Curr Pharm Des 23:1916–1926

    CAS  Article  Google Scholar 

  52. Wijetunga S, Li X-F, Jian C (2010) Effect of organic load on decolourization of textile wastewater containing acid dyes in upflow anaerobic sludge blanket reactor. J Hazard Mater 177:792–798. https://doi.org/10.1016/j.jhazmat.2009.12.103

    CAS  Article  Google Scholar 

  53. Wolf A (2002) A systematic study of the synthesis conditions for the preparation of highly active gold catalysts. Appl Catal A Gen 226:1–13. https://doi.org/10.1016/S0926-860X(01)00772-4

    CAS  Article  Google Scholar 

  54. Wu T, Zhang L, Gao J et al (2013) Fabrication of graphene oxide decorated with Au–Ag alloy nanoparticles and its superior catalytic performance for the reduction of 4-nitrophenol. J Mater Chem A 1:7384. https://doi.org/10.1039/c3ta10684e

    CAS  Article  Google Scholar 

  55. Wu X-Q, Wu X-W, Huang Q et al (2015) In situ synthesized gold nanoparticles in hydrogels for catalytic reduction of nitroaromatic compounds. Appl Surf Sci 331:210–218. https://doi.org/10.1016/j.apsusc.2015.01.077

    CAS  Article  Google Scholar 

  56. Wu S, He H, Li X et al (2018) Insights into atrazine degradation by persulfate activation using composite of nanoscale zero-valent iron and graphene: performances and mechanisms. Chem Eng J 341:126–136. https://doi.org/10.1016/j.cej.2018.01.136

    CAS  Article  Google Scholar 

  57. Wu S, Lin Y, Yang C et al (2019) Enhanced activation of peroxymonosulfte by LaFeO3 perovskite supported on Al2O3 for degradation of organic pollutants. Chemosphere 237:124478. https://doi.org/10.1016/j.chemosphere.2019.124478

    CAS  Article  Google Scholar 

  58. Wunder S, Polzer F, Lu Y et al (2010) Kinetic analysis of catalytic reduction of 4-nitrophenol by metallic nanoparticles immobilized in spherical polyelectrolyte brushes. J Phys Chem C 114:8814–8820. https://doi.org/10.1021/jp101125j

    CAS  Article  Google Scholar 

  59. Xia Y, Xiao H (2010) Hierarchical gold microspheres catalyst: simultaneous synthesis and immobilization. J Mol Catal A Chem 331:35–39. https://doi.org/10.1016/j.molcata.2010.07.013

    CAS  Article  Google Scholar 

  60. Xiong Z, Zhang H, Zhang W et al (2019) Removal of nitrophenols and their derivatives by chemical redox: a review. Chem Eng J 359:13–31. https://doi.org/10.1016/j.cej.2018.11.111

    CAS  Article  Google Scholar 

  61. Yang J, Du Y, Huang R et al (2002) Chemical modification, characterization and structure-anticoagulant activity relationships of Chinese lacquer polysaccharides. Int J Biol Macromol 31:55–62. https://doi.org/10.1016/S0141-8130(02)00066-1

    CAS  Article  Google Scholar 

  62. Zeng J, Zhang Q, Chen J, Xia Y (2010) A Comparison study of the catalytic properties of Au-based nanocages, nanoboxes, and nanoparticles. Nano Lett 10:30–35. https://doi.org/10.1021/nl903062e

    CAS  Article  Google Scholar 

  63. Zeng M, Wang Y, Liu Q et al (2016) Encaging palladium nanoparticles in chitosan modified montmorillonite for efficient, recyclable catalysts. ACS Appl Mater Interfaces 8:33157–33164. https://doi.org/10.1021/acsami.6b09895

    CAS  Article  Google Scholar 

  64. Zhang K, Peschel D, Brendler E et al (2009) Synthesis and bioactivity of cellulose derivatives. Macromol Symp 280:28–35. https://doi.org/10.1002/masy.200950604

    CAS  Article  Google Scholar 

  65. Zhang N, Wang X, Geng L et al (2019) Metallic Ni nanoparticles embedded in hierarchical mesoporous Ni(OH)2: a robust and magnetic recyclable catalyst for hydrogenation of 4-nitrophenol under mild conditions. Polyhedron 164:7–12. https://doi.org/10.1016/j.poly.2019.02.045

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Department of Chemistry, King Abdulaziz University, Saudi Arabia for providing research facilities and granting the permission to publish this work. This work was supported by the Ministry of Education, King Abdulaziz University Administration of Support for Research and Development Initiatives, Kingdom of Saudi Arabia, under the research scheme Post-Doctoral Researcher awarded to Dr Ajahar Khan.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Khalid A. Alamry.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3352 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Alamry, K.A., Khan, A. Efficient and easily retrievable green modified carboxymethyl cellulose coated A. indica stem bark encapsulated metal nanoparticles towards the reduction of o-nitrophenol and azo dyes. Appl Nanosci (2021). https://doi.org/10.1007/s13204-021-01672-3

Download citation

Keywords

  • Bio-composite catalyst
  • Bio-degradable
  • Azadirachta indica
  • Zerovalent
  • Reusable