The photocatalytic antibacterial behavior of Cu-doped nanocrystalline hematite prepared by mechanical alloying

Abstract

To improve the photocatalytic properties of hematite (Fe2O3), we take the merit of nanoscale and exploit a mechanical alloying (MA) method for Cu doping with various weight percentages (1, 3, 5, and 10). Our techniques to evaluate the phase and morphological characterization of the prepared nanoparticles were, respectively, X-ray diffraction (XRD) and field-emission scanning electron microscopy (FESEM). The elemental analysis and elemental distribution map were examined by energy dispersive X-ray spectroscopy (EDS). Furthermore, we utilized Fourier transform infrared (FTIR) analysis and ultraviolet–visible diffuse reflectance spectroscopy (UV–Vis DRS) for appraisal of Fe–O and Cu–O bonds and band gaps. Then we investigated the photocatalytic activity based on methylene blue (MB) photodegradation under irradiation of 300 W Xenon lamp and finally explored the antibacterial behavior against Escherichia coli (E. coli). The UV–Vis DRS results indicated reduction of band gap in the Cu-doped hematite nanoparticles. For the samples considered here, the sample with 5 wt.% of the dopant showed the lowest band-gap, 1.57 eV. It also decomposed 92.5% of MB from the wastewater under the Xenon-lamp irradiation during 120 min, and had the highest rate of disinfection with > 99.99% of bacterial removal in 360 min. Low band gap, substantial sunlight absorption, efficient MB removal, and high antibacterial activity are some suitable photocatalytic properties specifically achieved in this work.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. Abicht HK, Gonskikh Y, Gerber SD, Solioz M (2013) Non-enzymic copper reduction by menaquinone enhances copper toxicity in Lactococcus lactis IL1403. Microbiology 159(Pt_6):1190–1197

    CAS  Article  Google Scholar 

  2. Agarwal R, Ko KR, Gratzer PF, Frampton JP (2017) Biopatterning of keratinocytes in aqueous two-phase systems as a potential tool for skin tissue engineering. MRS Adv 2:2443–2449

    CAS  Article  Google Scholar 

  3. Alves M, Méreau R, Grignard B, Detrembleur C, Jérôme C, Tassaing T (2017) DFT investigation of the reaction mechanism for the guanidine catalysed ring-opening of cyclic carbonates by aromatic and alkyl-amines. RSC Adv 7(31):18993–19001

    CAS  Article  Google Scholar 

  4. Araújo TC, Oliveira HdS, Teles JJS, Fabris JD, Oliveira LC, de Mesquita JP (2016) Hybrid heterostructures based on hematite and highly hydrophilic carbon dots with photocatalytic activity. Appl Catal B 182:204–212

    Article  CAS  Google Scholar 

  5. Atabaev TS, Ajmal M, Hong NH, Kim H-K, Hwang Y-H (2015) Ti-doped hematite thin films for efficient water splitting. Appl Phys A 118(4):1539–1542

    CAS  Article  Google Scholar 

  6. Bhowmik R, Lone A, Vijayasri G Ga doped hematite (α-Fe2O3): a promising magnetic sensor material. In: 2015 2nd International Symposium on Physics and Technology of Sensors (ISPTS), 2015. IEEE, pp 22–26

  7. Bindhu M, Umadevi M (2015) Antibacterial and catalytic activities of green synthesized silver nanoparticles. Spectrochim Acta Part A 135:373–378

    CAS  Article  Google Scholar 

  8. Busca G (1987) FT-IR study of the surface of copper oxide. J Mol Catal 43(2):225–236

    CAS  Article  Google Scholar 

  9. Chaturvedi KS, Henderson JP (2014) Pathogenic adaptations to host-derived antibacterial copper. Front Cell Infect Microbiol 4:3

    Article  CAS  Google Scholar 

  10. Chen D, Ray AK (2001) Removal of toxic metal ions from wastewater by semiconductor photocatalysis. Chem Eng Sci 56(4):1561–1570

    CAS  Article  Google Scholar 

  11. Chiam SY, Kumar MH, Bassi PS, Seng HL, Barber J, Wong LH (2014) Improving the efficiency of hematite nanorods for photoelectrochemical water splitting by doping with manganese. ACS Appl Mater Interfaces 6(8):5852–5859

    Article  CAS  Google Scholar 

  12. Cornell RM, Schwertmann U (2003) The iron oxides: structure, properties, reactions, occurrences and uses. John Wiley and Sons, New Jersey

    Google Scholar 

  13. Dai Y, Wang Z, Zhao J, Xu L, Xu L, Yu X, Wei Y, Xing B (2018) Interaction of CuO nanoparticles with plant cells: internalization, oxidative stress, electron transport chain disruption, and toxicogenomic responses. Environ Sci 5(10):2269–2281

    CAS  Google Scholar 

  14. Dargahi Z, Asgharzadeh H, Maleki-Ghaleh H (2018) Synthesis of Mo-doped TiO2/reduced graphene oxide nanocomposite for photoelectrocatalytic applications. Ceram Int 44(11):13015–13023

    CAS  Article  Google Scholar 

  15. Das BK, Das T, Parashar K, Parashar S, Kumar R, Anupama A, Sahoo B (2020) Effect of Cr doping on structural, optical and dielectric properties of ZnO nanoceramics synthesized by mechanical alloying. Electron Mater Lett 166:255–263

    Article  CAS  Google Scholar 

  16. de Melo EJ, de Mesquita JP, Pereira MC, Cavalcante LCD, dos Santos FE, Fabris JD, Ardisson JD, de Oliveira LCA (2017) Synthesis and characterization of αFe 2–x M x O 3 (M= Co, Ni, Cu or Zn) photocatalysts for the degradation of the indigo carmine dye in water. Hyperfine Interact 238(1):59

    Article  CAS  Google Scholar 

  17. Demarchis L, Minella M, Nisticò R, Maurino V, Minero C, Vione D (2015) Photo-Fenton reaction in the presence of morphologically controlled hematite as iron source. J Photochem Photobiol A 307:99–107

    Article  CAS  Google Scholar 

  18. Dissanayake D, Mantilaka M, Palihawadana T, Chandrakumara G, De Silva R, Pitawala H, de Silva KN, Amaratunga G (2019) Facile and low-cost synthesis of pure hematite (α-Fe2O3) nanoparticles from naturally occurring laterites and their superior adsorption capability towards acid-dyes. RSC Adv 9(37):21249–21257

    CAS  Article  Google Scholar 

  19. Elguindi J, Wagner J, Rensing C (2009) Genes involved in copper resistance influence survival of Pseudomonas aeruginosa on copper surfaces. J Appl Microbiol 106(5):1448–1455

    CAS  Article  Google Scholar 

  20. Fan L, Dongmei J, Xueming M (2009) The effect of milling atmospheres on photocatalytic property of Fe-doped TiO2 synthesized by mechanical alloying. J Alloy Compd 470(1–2):375–378

    CAS  Article  Google Scholar 

  21. Forest V, Cottier M, Pourchez J (2015) Electrostatic interactions favor the binding of positive nanoparticles on cells: a reductive theory. Nano Today 10(6):677–680

    CAS  Article  Google Scholar 

  22. Fu Y, Dong C-L, Zhou Z, Lee W-Y, Chen J, Guo P, Zhao L, Shen S (2016) Solution growth of Ta-doped hematite nanorods for efficient photoelectrochemical water splitting: a tradeoff between electronic structure and nanostructure evolution. Phys Chem Chem Phys 18(5):3846–3853

    CAS  Article  Google Scholar 

  23. Grabias A, Xu T, Sorescu M (2013) Effect of niobium valence on the mechanochemical activation of niobium oxides–hematite magnetic ceramic nanoparticles. Ceram Int 39(5):5343–5357

    CAS  Article  Google Scholar 

  24. Gurunathan K, Maruthamuthu P (1995) Photogeneration of hydrogen using visible light with undoped/doped α-Fe2O3 in the presence of methyl viologen. Int J Hydrog Energy 20(4):287–295

    CAS  Article  Google Scholar 

  25. Hamann TW (2012) Splitting water with rust: hematite photoelectrochemistry. Dalton Trans 41(26):7830–7834

    CAS  Article  Google Scholar 

  26. Harikumar P, Aravind A (2016) Antibacterial activity of copper nanoparticles and copper nanocomposites against Escherichia coli bacteria. Int J Sci 5(2):83–90

    Google Scholar 

  27. Hausrath AC, Ramirez NA, Ly AT, McEvoy MM (2020) The bacterial copper resistance protein CopG contains a cysteine-bridged tetranuclear copper cluster. J Biol Chem 295(32):11364–11376

    CAS  Article  Google Scholar 

  28. Hegazey R, Abdelrahman EA, Kotp YH, Hameed AM, Subaihi A (2020) Facile fabrication of hematite nanoparticles from Egyptian insecticide cans for efficient photocatalytic degradation of rhodamine B dye. J Mater Res Technol 9(2):1652–1661

    CAS  Article  Google Scholar 

  29. Hernández-Ramírez A, Medina-Ramírez I (2016) Photocatalytic semiconductors. Springer, Cham

    Google Scholar 

  30. Hoseinzadeh E, Makhdoumi P, Taha P, Hossini H, Stelling J, Amjad Kamal M (2017) A review on nano-antimicrobials: metal nanoparticles, methods and mechanisms. Curr Drug Metab 18(2):120–128

    CAS  Article  Google Scholar 

  31. Hyun DK, Sub Lee K, Kim YS, Chung YC, Kim SJ (2006) Photocatalytic activity of Ni 8 wt%-Doped TiO2 photocatalyst synthesized by mechanical alloying under visible light. J Am Ceram Soc 89(2):515–518

    Article  CAS  Google Scholar 

  32. Javid A, Kumar M, Yoon S, Lee JH, Han JG (2020) Synergistic enhancement of antibacterial activity of Cu: C nanocomposites through plasma induced microstructural engineering. Appl Surf Sci 500:143996

    CAS  Article  Google Scholar 

  33. Kim JY, Magesh G, Youn DH, Jang J-W, Kubota J, Domen K, Lee JS (2013) Single-crystalline, wormlike hematite photoanodes for efficient solar water splitting. Sci Rep 3:2681

    Article  Google Scholar 

  34. Kim H-E, Lee H-J, Kim MS, Kim T, Lee H, Kim H-H, Cho M, Hong S-W, Lee C (2019) Differential microbicidal effects of bimetallic iron–copper nanoparticles on Escherichia coli and MS2 Coliphage. Environ Sci Technol 53(5):2679–2687

    CAS  Article  Google Scholar 

  35. Kim T, Cho J, Cha D, Kim MS, Park EJ, Lee H-J, Lee C (2020) Cupric ion in combination with hydrogen peroxide and hydroxylamine applied to inactivation of different microorganisms. J Hazard Mater 400:123305

    CAS  Article  Google Scholar 

  36. Kondo J (1998) Cu2O as a photocatalyst for overall water splitting under visible light irradiation. Chem Commun 3:357–358

    Google Scholar 

  37. Kudo A, Omori K, Kato H (1999) A novel aqueous process for preparation of crystal form-controlled and highly crystalline BiVO4 powder from layered vanadates at room temperature and its photocatalytic and photophysical properties. J Am Chem Soc 121(49):11459–11467

    CAS  Article  Google Scholar 

  38. Lara HH, Ayala-Nuñez NV, Ixtepan-Turrent L, Rodriguez-Padilla C (2010) Mode of antiviral action of silver nanoparticles against HIV-1. J Nanobiotechnol 8(1):1–10

    Article  CAS  Google Scholar 

  39. Lassoued A, Lassoued MS, Dkhil B, Gadri A, Ammar S (2017) Structural, optical and morphological characterization of Cu-doped α-Fe2O3 nanoparticles synthesized through co-precipitation technique. J Mol Struct 1148:276–281

    CAS  Article  Google Scholar 

  40. Lassoued A, Lassoued MS, Dkhil B, Ammar S, Gadri A (2018) Photocatalytic degradation of methylene blue dye by iron oxide (α-Fe2O3) nanoparticles under visible irradiation. J Mater Sci 29(10):8142–8152

    CAS  Google Scholar 

  41. Li W, Osora H, Otero L, Duncan DC, Fox MA (1998) Photoelectrochemistry of a substituted-Ru (bpy) 32+-labeled polyimide and nanocrystalline SnO2 composite formulated as a thin-film electrode. J Phys Chem A 102(28):5333–5340

    CAS  Article  Google Scholar 

  42. Li F, Lei C, Shen Q, Li L, Wang M, Guo M, Huang Y, Nie Z, Yao S (2013) Analysis of copper nanoparticles toxicity based on a stress-responsive bacterial biosensor array. Nanoscale 5(2):653–662

    CAS  Article  Google Scholar 

  43. Lin Y, Yuan G, Sheehan S, Zhou S, Wang D (2011) Hematite-based solar water splitting: challenges and opportunities. Energy Environ Sci 4(12):4862–4869

    CAS  Article  Google Scholar 

  44. Liu Y, Yu Y-X, Zhang W-D (2012) Photoelectrochemical properties of Ni-doped Fe2O3 thin films prepared by electrodeposition. Electrochim Acta 59:121–127

    Article  CAS  Google Scholar 

  45. López R, Gómez R (2012) Band-gap energy estimation from diffuse reflectance measurements on sol–gel and commercial TiO2: a comparative study. J Sol-Gel Sci Technol 61(1):1–7

    Article  CAS  Google Scholar 

  46. Low I-M (2012) Advances in science and technology of Mn+1AXn phases. Elsevier, Amsterdam

    Google Scholar 

  47. Lu J, Batjikh I, Hurh J, Han Y, Ali H, Mathiyalagan R, Ling C, Ahn JC, Yang DC (2019) Photocatalytic degradation of methylene blue using biosynthesized zinc oxide nanoparticles from bark extract of Kalopanax septemlobus. Optik 182:980–985

    CAS  Article  Google Scholar 

  48. Lubis S, Sitompul DW (2019) Photocatalytic degradation of indigo carmine dye using α-Fe2O3/bentonite nanocomposite prepared by mechanochemical synthesis. IOP series: materials science and engineering. IOP Publishing, Bristol, p 012142

    Google Scholar 

  49. Makvandi P, Gu JT, Zare EN, Ashtari B, Moeini A, Tay FR, Niu L-n (2020) Polymeric and inorganic nanoscopical antimicrobial fillers in dentistry. Acta Biomater 101:69–101

    CAS  Article  Google Scholar 

  50. Maleki-Ghaleh H, Shahzadeh M, Hoseinizadeh SA, Arabi A, Aghaie E, Siadati MH (2016) Evaluation of the photo-electro-catalytic behavior of nano-structured ZnO films fabricated by electrodeposition process. Mater Lett 169:140–143

    CAS  Article  Google Scholar 

  51. Malviya KD, Dotan H, Shlenkevich D, Tsyganok A, Mor H, Rothschild A (2016) Systematic comparison of different dopants in thin film hematite (α-Fe2O3) photoanodes for solar water splitting. J Mater Chem A 4(8):3091–3099

    CAS  Article  Google Scholar 

  52. Mansour H, Omri K, Ammar S (2019) Structural, optical and magnetic properties of cobalt doped hematite nanoparticles. Chem Phys 525:110400

    CAS  Article  Google Scholar 

  53. Mathews S, Kumar R, Solioz M (2015) Copper reduction and contact killing of bacteria by iron surfaces. Appl Environ Microbiol 81(18):6399–6403

    CAS  Article  Google Scholar 

  54. Meng X, Qin G, Li S, Wen X, Ren Y, Pei W, Zuo L (2011) Enhanced photoelectrochemical activity for Cu and Ti doped hematite: The first principles calculations. Appl Phys Lett 98(11):112104

    Article  CAS  Google Scholar 

  55. Meng X, Qin G, Goddard WA III, Li S, Pan H, Wen X, Qin Y, Zuo L (2013) Theoretical understanding of enhanced photoelectrochemical catalytic activity of Sn-doped hematite: anisotropic catalysis and effects of morin transition and Sn doping. J Phys Chem C 117(8):3779–3784

    CAS  Article  Google Scholar 

  56. Mirbagheri N, Wang D, Peng C, Wang J, Huang Q, Fan C, Ferapontova EE (2014) Visible light driven photoelectrochemical water oxidation by Zn-and Ti-doped hematite nanostructures. ACS Catal 4(6):2006–2015

    CAS  Article  Google Scholar 

  57. Molteni C, Abicht HK, Solioz M (2010) Killing of bacteria by copper surfaces involves dissolved copper. Appl Environ Microbiol 76(12):4099–4101

    CAS  Article  Google Scholar 

  58. Moradlou O, Rabiei Z, Delavari N (2019) Antibacterial effects of carbon quantum dots@ hematite nanostructures deposited on titanium against Gram-positive and Gram-negative bacteria. J Photochem Photobiol A 379:144–149

    CAS  Article  Google Scholar 

  59. Naresh N, Bhowmik R, Ghosh B, Banerjee S (2011) Study of surface magnetism, exchange bias effect, and enhanced ferromagnetism in α-Fe1. 4Ti0. 6O3 alloy. J Appl Phys 109(9):093913

    Article  CAS  Google Scholar 

  60. Neufeld O, Toroker MC (2015) Platinum-doped α-Fe2O3 for enhanced water splitting efficiency: a DFT+ U study. J Phys Chem C 119(11):5836–5847

    CAS  Article  Google Scholar 

  61. Pal C, Asiani K, Arya S, Rensing C, Stekel DJ, Larsson DJ, Hobman JL (2017) Metal resistance and its association with antibiotic resistance. Advances in microbial physiology. Elsevier, Amsterdam, pp 261–313

    Google Scholar 

  62. Paquin F, Rivnay J, Salleo A, Stingelin N, Silva C (2013) Multi-phase semicrystalline microstructures drive exciton dissociation in neat plastic semiconductors. J Mater Chem C. https://doi.org/10.1039/C5TC02043C

    Article  Google Scholar 

  63. Park HS, Kim DH, Kim SJ, Lee KS (2006) The photocatalytic activity of 2.5 wt% Cu-doped TiO2 nano powders synthesized by mechanical alloying. J Alloys Compd 415(1–2):51–55

    CAS  Article  Google Scholar 

  64. Pontel LB, Soncini FC (2009) Alternative periplasmic copper-resistance mechanisms in Gram negative bacteria. Mol Microbiol 73(2):212–225

    CAS  Article  Google Scholar 

  65. Pozun ZD, Henkelman G (2011) Hybrid density functional theory band structure engineering in hematite. J Chem Phys 134(22):224706

    Article  CAS  Google Scholar 

  66. Raja K, Ramesh P, Geetha D (2014) Structural, FTIR and photoluminescence studies of Fe doped ZnO nanopowder by co-precipitation method. Spectrochim Acta Part A 131:183–188

    CAS  Article  Google Scholar 

  67. Ramya SS, Mahadevan C (2014) Preparation and structural, optical, magnetic, and electrical characterization of Mn2+/Co2+/Cu2+ doped hematite nanocrystals. J Solid State Chem 211:37–50

    Article  CAS  Google Scholar 

  68. Rapadas NJ, Balela MDL (2017) Hydrothermal synthesis of hierarchical hematite (α-Fe2O3) microstructures for photocatalytic degradation of methyl orange. Philipp J Sci 146(4):395–402

    Google Scholar 

  69. Reddy CV, Reddy IN, Akkinepally B, Reddy KR, Shim J (2020) Synthesis and photoelectrochemical water oxidation of (Y, Cu) codoped α-Fe2O3 nanostructure photoanode. J Alloy Compd 814:152349

    Article  CAS  Google Scholar 

  70. Reveendran R, Khadar MA (2018) Structural, optical and electrical properties of Cu doped α-Fe2O3 nanoparticles. Mater Chem Phys 219:142–154

    CAS  Article  Google Scholar 

  71. Rumyantceva V, Rumyantceva V, Koshel E, Vinogradov V (2019) Biocide-conjugated magnetite nanoparticles as an advanced platform for biofilm treatment. Ther Deliv 10(4):241–250

    CAS  Article  Google Scholar 

  72. Rusevova K, Kopinke F-D, Georgi A (2012) Nano-sized magnetic iron oxides as catalysts for heterogeneous Fenton-like reactions–influence of Fe (II)/Fe (III) ratio on catalytic performance. J Hazard Mater 241:433–440

    Article  CAS  Google Scholar 

  73. Salem SS, Fouda A (2020) Green synthesis of metallic nanoparticles and their prosective biotechnological applications: an overview. Biol Trace Element Res. https://doi.org/10.1007/s12011-020-02138-3

    Article  Google Scholar 

  74. Santo CE, Taudte N, Nies DH, Grass G (2008) Contribution of copper ion resistance to survival of Escherichia coli on metallic copper surfaces. Appl Environ Microbiol 74(4):977–986

    CAS  Article  Google Scholar 

  75. Satheesh R, Vignesh K, Suganthi A, Rajarajan M (2014) Visible light responsive photocatalytic applications of transition metal (M=Cu, Ni and Co) doped α-Fe2O3 nanoparticles. J Environ Chem Eng 2(4):1956–1968

    CAS  Article  Google Scholar 

  76. Sayama K, Yoshida R, Kusama H, Okabe K, Abe Y, Arakawa H (1997) Photocatalytic decomposition of water into H2 and O2 by a two-step photoexcitation reaction using a WO3 suspension catalyst and an Fe3+/Fe2+ redox system. Chem Phys Lett 277(4):387–391

    CAS  Article  Google Scholar 

  77. Shcherbik N, Pestov DG (2019) The impact of oxidative stress on ribosomes: from injury to regulation. Cells 8(11):1379

    CAS  Article  Google Scholar 

  78. Shen S, Guo P, Wheeler DA, Jiang J, Lindley SA, Kronawitter CX, Zhang JZ, Guo L, Mao SS (2013) Physical and photoelectrochemical properties of Zr-doped hematite nanorod arrays. Nanoscale 5(20):9867–9874

    CAS  Article  Google Scholar 

  79. Singh N, Paknikar KM, Rajwade J (2019) Gene expression is influenced due to ‘nano’and ‘ionic’copper in pre-formed Pseudomonas aeruginosa biofilms. Environ Res 175:367–375

    CAS  Article  Google Scholar 

  80. Sivula K, Le Formal F, Grätzel M (2011) Solar water splitting: progress using hematite (α-Fe2O3) photoelectrodes. Chemsuschem 4(4):432–449

    CAS  Article  Google Scholar 

  81. Spuhler D, Rengifo-Herrera JA, Pulgarin C (2010) The effect of Fe2+, Fe3+, H2O2 and the photo-Fenton reagent at near neutral pH on the solar disinfection (SODIS) at low temperatures of water containing Escherichia coli K12. Appl Catal B 96(1–2):126–141

    CAS  Article  Google Scholar 

  82. Stanhaus C, Alves LL, Ferrari JL, Padilha JC, Góes MS (2020) Hematite (α-Fe2O3) pure and doped with Eu3+ obtained by high-energy ball milling process. Mater Chem Phys 254:123385

    CAS  Article  Google Scholar 

  83. Sun H-q, Lu X-m, Gao P-j (2011) The exploration of the antibacterial mechanism of Fe3+ against bacteria. Braz J Microbiol 42(1):410–414

    CAS  Article  Google Scholar 

  84. Sun P, Wang C, Zhou X, Cheng P, Shimanoe K, Lu G, Yamazoe N (2014) Cu-doped α-Fe2O3 hierarchical microcubes: synthesis and gas sensing properties. Sens Actuators B 193:616–622

    CAS  Article  Google Scholar 

  85. Sun Q, Hong Y, Liu Q, Dong L (2018) Synergistic operation of photocatalytic degradation and Fenton process by magnetic Fe3O4 loaded TiO2. Appl Surf Sci 430:399–406

    CAS  Article  Google Scholar 

  86. Suryanarayana C, Ivanov E, Boldyrev V (2001) The science and technology of mechanical alloying. Mater Sci Eng A 304:151–158

    Article  Google Scholar 

  87. Swanson HE, Tatge E (1953) Standard X-ray diffraction powder patterns, vol 1. National Bureau of Standards. Washington, D.C.

  88. Uhl L, Dukan S (2016) Hydrogen peroxide induced cell death: the major defences relative roles and consequences in E. coli. PLoS ONE 11(8):e0159706

    Article  CAS  Google Scholar 

  89. Villapún VM, Dover LG, Cross A, González S (2016) Antibacterial metallic touch surfaces. Materials 9(9):736

    Article  CAS  Google Scholar 

  90. Wu R-A, Lin CW, Tseng WJ (2017) Preparation of electrospun Cu-doped α-Fe2O3 semiconductor nanofibers for NO2 gas sensor. Ceram Int 43:S535–S540

    CAS  Article  Google Scholar 

  91. Yogamalar NR, Bose AC (2011) Burstein-Moss shift and room temperature near-band-edge luminescence in lithium-doped zinc oxide. Appl Phys A 103(1):33–42

    CAS  Article  Google Scholar 

  92. Zhang W, Li X, Zhao Q, Hou Y, Shen Y, Chen G (2011) Uniform α-Fe2O3 nanotubes fabricated for adsorption and photocatalytic oxidation of naphthalene. Mater Chem Phys 129(3):683–687

    CAS  Article  Google Scholar 

  93. Zhang Y, Jiang S, Song W, Zhou P, Ji H, Ma W, Hao W, Chen C, Zhao J (2015) Nonmetal P-doped hematite photoanode with enhanced electron mobility and high water oxidation activity. Energy Environ Sci 8(4):1231–1236

    CAS  Article  Google Scholar 

  94. Zhang Y, Ji H, Ma W, Chen C, Song W, Zhao J (2016) Doping-promoted solar water oxidation on hematite photoanodes. Molecules 21(7):868

    Article  CAS  Google Scholar 

  95. Zhou Z, Liu J, Long R, Li L, Guo L, Prezhdo OV (2017) Control of charge carriers trapping and relaxation in hematite by oxygen vacancy charge: ab initio non-adiabatic molecular dynamics. J Am Chem Soc 139(19):6707–6717

    CAS  Article  Google Scholar 

  96. Zhou J, Xiang H, Zabihi F, Yu S, Sun B, Zhu M (2019) Intriguing anti-superbug Cu2O@ ZrP hybrid nanosheet with enhanced antibacterial performance and weak cytotoxicity. Nano Res 12(6):1453–1460

    CAS  Article  Google Scholar 

Download references

Funding

This study was non-financially supported by the K. N. Toosi University of Technology.

Author information

Affiliations

Authors

Corresponding author

Correspondence to H. Meleki-Ghaleh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ahmadi-Arpanah, A., Meleki-Ghaleh, H., Dargahi, Z. et al. The photocatalytic antibacterial behavior of Cu-doped nanocrystalline hematite prepared by mechanical alloying. Appl Nanosci (2021). https://doi.org/10.1007/s13204-020-01659-6

Download citation

Keywords

  • Hematite
  • Cu doping
  • Photocatalytic activity
  • Wastewater
  • Antibacterial