A novel route to obtain TiO2 nanoparticles using green synthesis with vanillin and Bougainvillea glabra Choisy extract

Abstract

In this work, we present two green routes, as an alternative method to traditional synthesis, to obtain TiO2 nanoparticles (NPs) from vanillin (TiO2_V) and Bougainvillea glabra Choisy flower extracts (TiO2_B) as suitable non-toxic reducing agents due to their potential to reduce their environmental impact and cost during the synthesis process. The NPs presented an anatase phase as confirmed by X-ray diffraction, and with crystallite sizes of 6.10 nm (TiO2_V) and 5.89 nm (TiO2_B), their hydrodynamic size and morphology were characterized by dynamic light scattering and scanning electron microscopy, respectively. Infrared spectroscopy confirmed TiO2 characteristic bands for the obtained materials and from their UV–Vis absorption spectra band gap values of 3.07 and 3.08 eV for TiO2_V and TiO2_B, respectively, were calculated. Additionally, Grätzel cells were prepared to investigate the efficiency of the NPs obtained by this green synthesis. Finally, we included a theoretical section where, from ab initio calculations of structural and electronic properties, we explain the role of the reducing agents of the employed experimental synthesis, finding that the radicals restrict the grown-up of the clusters by the passivation of the dangling bonds modifying the crystal structure of the clusters splitting the t2g orbitals, altering the band gap of the clusters.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Abarca-Vargas R, Petricevich VL (2018) Bougainvillea genus: a review on phytochemistry, pharmacology, and toxicology. Evid Based Complem Alternat Med 2018:1–17. https://doi.org/10.1155/2018/9070927

    Article  Google Scholar 

  2. Al-Taweel S, Saud H (2016) New route for synthesis of pure anatase TiO2 nanoparticles via ultrasound-assisted sol-gel method. J Chem Pharm Res 8:620–626

    CAS  Google Scholar 

  3. Amanulla AM, Sundaram R (2019) Green synthesis of TiO2 nanoparticles using orange peel extract for antibacterial, cytotoxicity and humidity sensor applications. Mater Today Proc 8:323–331. https://doi.org/10.1016/j.matpr.2019.02.118

    CAS  Article  Google Scholar 

  4. Arief S, Hidayani P, Aferta L, Zulhadjri Ban T, Ohya Y (2017) Green chemistry formation of stable Ag nanoparticles (AgNPs) in isopropanol solvent. Orient J Chem 33(1):87–91. https://doi.org/10.13005/ojc/330109

    CAS  Article  Google Scholar 

  5. Batzill M, Morales EH, Diebold U (2006) Influence of nitrogen doping on the defect formation and surface properties of TiO2 rutile and anatase. Phys Rev Lett 96:026103. https://doi.org/10.1103/PhysRevLett.96.026103

    CAS  Article  Google Scholar 

  6. Blöchl PE (1994) Projector augmented-wave method. Phys Rev B 50:17953. https://doi.org/10.1103/PhysRevB.50.17953

    Article  Google Scholar 

  7. Choudhury B, Choudhury A (2014) Oxygen defect dependent variation of band gap, Urbach energy and luminescence property of anatase, anatase-rutile mixed phase and of rutile phases of TiO2 nanoparticles. Phys E 56:364–371. https://doi.org/10.1016/j.physe.2013.10.014

    CAS  Article  Google Scholar 

  8. Dubey R, Krishnamurthy KV, Singh S (2019) Experimental studies of TiO2 nanoparticles synthesized by sol-gel and solvothermal routes for DSSCs application. Res Phys 14:102390. https://doi.org/10.1016/j.rinp.2019.102390

    Article  Google Scholar 

  9. Godbert N, Mastropietro T, Poerio T (2018) Mesoporous TiO2 thin films: state of the art. http://doi.org/10.5772/intechopen.74244

  10. Goutam SP, Saxena G, Singh V, Yadav AK, Bharagava RN, Thapa KB (2018) Green synthesis of TiO2 nanoparticles using leaf extract of Jatropha curcas l. for photocatalytic degradation of tannery wastewater. Chem Eng J 336:386–396. https://doi.org/10.1016/j.cej.2017.12.029

    CAS  Article  Google Scholar 

  11. Grimme S, Ehrlich S, Goerigk L (2011) A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Comp Chem 32:1456. https://doi.org/10.1063/1.3382344

    CAS  Article  Google Scholar 

  12. Hafizah N, Iis S (2009) Nanosized TiO2 photocatalyst powder via sol-gel method: effect of hydrolysis degree on powder properties. Int J Photoenergy 2009:1–8. https://doi.org/10.1155/2009/962783

    CAS  Article  Google Scholar 

  13. He F, Ma F, Li J, Li T, Li G (2014) Effect of calcination temperature on the structural properties and photocatalytic activities of solvothermal synthesized TiO2 hollow nanoparticles. Ceram Int 40:6441–6446. https://doi.org/10.1016/j.ceramint.2013.11.094

    CAS  Article  Google Scholar 

  14. Heyd J, Scuseria GE, Ernzerhof M (2006) Erratum: “Hybrid functionals based on a screened Coulomb potential” [J. Chem. Phys. 118, 8207 (2003)]. J Chem Phys 124:219906. https://doi.org/10.1063/1.2204597

    CAS  Article  Google Scholar 

  15. Hussain M, Ceccarelli R, Marchisio D, Fino D, Russo N, Geobaldo F (2010) Synthesis, characterization and photocatalytic application of novel TiO2 nanoparticles. Chem Eng J 157:45–51. https://doi.org/10.1016/j.cej.2009.10.043

    CAS  Article  Google Scholar 

  16. Ibarra JJ (2015) Síntesis de nanopartículas de plata y dióxido de titanio por métodos ambientalmente amigables para aplicaciones en la industria de la curtiduría. PhD thesis

  17. Jeng MJ, Wung YL, Chang LB, Chow L (2013) Dye-sensitized solar cells with anatase TiO2 nanorods prepared by hydrothermal method. Int J Photoenergy 2013:280253. https://doi.org/10.1155/2013/280253

    CAS  Article  Google Scholar 

  18. Kresse G, Furthmüller J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54:11169–11186. https://doi.org/10.1103/PhysRevB.54.11169

    CAS  Article  Google Scholar 

  19. Kresse G, Joubert D (1999) From ultrasoft pseudopotentials to the projector augmented wave method. Phys Rev B 59:1758. https://doi.org/10.1103/PhysRevB.59.1758

    CAS  Article  Google Scholar 

  20. Kumar R, Sharma P, Mishra PS (2012) A review on the vanillin derivatives showing various biological activities. Int J PharmTech Res 4(1):266–279

    CAS  Google Scholar 

  21. Liu Z, Jian Z, Fang J, Xu X, Zhu X, Wu S (2012) Low-temperature reverse microemulsion synthesis, characterization, and photocatalytic performance of nanocrystalline titanium dioxide. Int J Photoenergy 2012:8. https://doi.org/10.1155/2012/702503

    CAS  Article  Google Scholar 

  22. Mahal H, Badheka L, Mukherjee T (2001) Radical scavenging properties of a flavouring agent-vanillin. Res Chem Intermed 27:595–604. https://doi.org/10.1163/156856701317051699

    CAS  Article  Google Scholar 

  23. Makula P, Pacia M, Macyk W (2018) How to correctly determine the band gap energy of modified semiconductor photocatalysts based on UV–Vis spectra. J Phys Chem Lett 9(23):6814–6817. https://doi.org/10.1021/acs.jpclett.8b02892

    CAS  Article  Google Scholar 

  24. Marslin G, Siram K, Maqbool Q, Selvakesavan RK, Kruszka D, Kachlicki P, Franklin G (2018) Secondary metabolites in the green synthesis of metallic nanoparticles. Materials 11(6):1–25. https://doi.org/10.3390/ma11060940

    CAS  Article  Google Scholar 

  25. Monticone S, Tufeu R, Kanaev A, Scolan E, Sanchez C (2000) Quantum size effect in TiO2 nanoparticles: does it exist? Appl Surf Sci 162–163:565–570. https://doi.org/10.1016/S0169-4332(00)00251-8

    Article  Google Scholar 

  26. Ochoa Y, Ortegón Y, Rodríguez-Paez JE (2010) Synthesis of TiO2, anatase phase by the sol-gel method: study of the effect of the presence of AcacH in the system. Revista Facultad de Ingeniería Universidad de Antioquia, pp 29–40

  27. Pabisiak T, Kiejna A (2007) Energetics of oxygen vacancies at rutile TiO2 (110) surface. Solid State Commun 144(7):324–328. https://doi.org/10.1016/j.ssc.2007.08.043

    CAS  Article  Google Scholar 

  28. Rauf MA, Oves M, Rehman FU, Khan AR, Husain N (2019) Bougainvillea flower extract mediated zinc oxide’s nanomaterials for antimicrobial and anticancer activity. Biomed Pharmacother 116:108983. https://doi.org/10.1016/j.biopha.2019.108983

    CAS  Article  Google Scholar 

  29. Ruhane TA, Islam MT, Rahaman MS, Bhuiyan MMH, Islam JMM, Bhuiyan TI, Khan KA, Khan MA (2017) Impact of photo electrode thickness and annealing temperature on natural dye sensitized solar cell. Sustain Energy Technol Assess 20:72–77. https://doi.org/10.1016/j.seta.2017.01.012

    Article  Google Scholar 

  30. Shanavas S, Priyadharsan A, Karthikeyan S, Dharmaboopathi K, Ragavan I, Vidya C, Acevedo R, Anbarasana PM (2019) Green synthesis of titanium dioxide nanoparticles using Phyllanthus niuri leaf extract and study on its structural, optical and morphological properties. Mater Today Proc 26(4):3531–3534. https://doi.org/10.1016/j.matpr.2019.06.715

    CAS  Article  Google Scholar 

  31. Sharma K, Sharma V, Sharma SS (2018) Dye-sensitized solar cells: fundamentals and current status. Nanoscale Res Lett 381:1–46. https://doi.org/10.1186/s11671-018-2760-6

    CAS  Article  Google Scholar 

  32. Shekarforoush E, Mendes AC, Baj V, Beeren SR, Chronakis IS (2017) Electrospun phospholipid fibers as micro-encapsulation and antioxidant matrices. Molecules 22:1708. https://doi.org/10.3390/molecules22101708

    CAS  Article  Google Scholar 

  33. Tong T, Zhang J, Tian B, Chen F, He D (2008) Preparation and characterization of anatase TiO2 microspheres with porous frameworks via controlled hydrolysis of titanium alkoxide followed by hydrothermal treatment. Mater Lett 62:2970–2972. https://doi.org/10.1016/j.matlet.2008.01.085

    CAS  Article  Google Scholar 

  34. Ünal H, Gunceler D, Güseren O, Ellialtioglu S, Mete E (2015) Hybrid functional calculated optical and electronic structures of thin anatase TiO2 nanowires with organic dye adsorbates. Appl Surf Sci 354:437–442. https://doi.org/10.1016/j.apsusc.2015.04.086(European Conference on Surface Science 2014)

    CAS  Article  Google Scholar 

  35. Watson S, Beydoun D, Scott J, Amal R (2004) Preparation of nanosized crystalline TiO2 particles at low temperature for photocatalysis. J Nanopart Res 6:193–207. https://doi.org/10.1023/B:NANO.0000034623.33083.71

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to María Concepción García-Castañeda.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 752 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

García-Castañeda, M.C., Castellanos-Águila, J.E., Maury-Cuna, G.H.I. et al. A novel route to obtain TiO2 nanoparticles using green synthesis with vanillin and Bougainvillea glabra Choisy extract. Appl Nanosci (2021). https://doi.org/10.1007/s13204-020-01648-9

Download citation

Keywords

  • Green synthesis
  • Titanium dioxide
  • Photoenergy
  • DFT
  • Theoretical properties