Catalytic reduction of 4-nitrophenol on the surface of copper/copper oxide nanoparticles: a kinetics study

Abstract

Metal and metal oxide nanoparticles are very suitable for catalytic activities in organic electron transfer processes. Among these, copper is one of the most important materials that have catalytic activity and the synthesis of copper/copper oxide nanoparticles (\(\mathrm{C}\mathrm{u}\)/\({\mathrm{C}\mathrm{u}}_{2}\mathrm{O}\) NPs) is more cost-effective than other noble metals. In this study, a combination of copper nanoparticles with different degree of oxidation has been synthesized by electrochemical method. The efficiency of synthesized material for the catalytic reduction of 4-nitrophenol to 4-aminophenol in the presence of sodium borohydride was studied. The morphology, particle size, and crystalline structure of the synthesized catalyst was studied by scanning electron microscopy (SEM) and X-ray diffraction (XRD) methods. The kinetics of reaction was followed by UV–Visible spectroscopy and the effect of different parameters such as initial concentrations of 4-nitrophenol, sodium borohydride and catalyst dosage on the reaction rate was studied. The recyclability of the prepared catalyst was investigated as well. The reaction order of the catalyst dosage was investigated by graphical analysis method. Finally based on Langmuir–Hinshelwood (L–H) mechanism the rate of reaction was modeled.

This is a preview of subscription content, log in to check access.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

References

  1. Aditya T, Jana J, Singh NK, Pal A, Pal T (2017) Remarkable facet selective reduction of 4-nitrophenol by morphologically tailored (111) faceted Cu2O nanocatalyst. ACS Omega 2:1968–1984. https://doi.org/10.1021/acsomega.6b00447

    CAS  Article  Google Scholar 

  2. Albukhari SM, Ismail M, Akhtar K, Danish EY (2019) Catalytic reduction of nitrophenols and dyes using silver nanoparticles @ cellulose polymer paper for the resolution of waste water treatment challenges. Coll Surf A Physicochem Eng Asp 577:548–561. https://doi.org/10.1016/j.colsurfa.2019.05.058

    CAS  Article  Google Scholar 

  3. Ali ZI, Ghazy OA, Meligi G, Saleh HH, Bekhit M (2018) Copper nanoparticles: synthesis, characterization and its application as catalyst for p-nitrophenol reduction. J Inorg Organomet Polym Mater 28:1195–1205. https://doi.org/10.1007/s10904-018-0780-4

    CAS  Article  Google Scholar 

  4. Azizian S, Eris S, Wilson LD (2018) Re-evaluation of the century-old Langmuir isotherm for modeling adsorption phenomena in solution. Chem Phys 513:99–104. https://doi.org/10.1016/j.chemphys.2018.06.022

    CAS  Article  Google Scholar 

  5. Bhatia P, Nath M (2020) Green synthesis of p-NiO/n-ZnO nanocomposites: excellent adsorbent for removal of congo red and efficient catalyst for reduction of 4-nitrophenol present in wastewater. J Water Process Eng. https://doi.org/10.1016/j.jwpe.2019.101017

    Article  Google Scholar 

  6. Blanco E, Atienzar P, Hernández P, Quintana C (2017) The Langmuir-Hinshelwood approach for kinetic evaluation of cucurbit [7] uril-capped gold nanoparticles in the reduction of the antimicrobial nitrofurantoin. Phys Chem Chem Phys 19:18913–18923. https://doi.org/10.1039/c7cp03534a

    CAS  Article  Google Scholar 

  7. Boonying P, Martwiset S, Amnuaypanich S (2018) Highly catalytic activity of nickel nanoparticles generated in poly(methylmethacrylate)@poly (2-hydroxyethylmethacrylate) (PMMA@PHEMA) core-shell micelles for the reduction of 4-nitrophenol (4-NP). Appl Nanosci (Switz) 8:475–488. https://doi.org/10.1007/s13204-018-0669-0

    CAS  Article  Google Scholar 

  8. Burés J (2016) A simple graphical method to determine the order in catalyst. Angew Chem Int 55:2028–2031. https://doi.org/10.1002/anie.201508983

    CAS  Article  Google Scholar 

  9. Carugno S, Chassaing E, Rosso M, González GA (2014) Enhanced electrochemical oxidation of methanol on copper electrodes modified by electrocorrosion and electrodeposition. Mater Chem Phys 143:1012–1017. https://doi.org/10.1016/j.matchemphys.2013.10.039

    CAS  Article  Google Scholar 

  10. Chary KVR, Sagar GV, Srikanth CS, Rao VV (2007) Characterization and catalytic functionalities of copper oxide catalysts supported on zirconia. J Phys Chem B 111:543–550. https://doi.org/10.1021/jp063335x

    CAS  Article  Google Scholar 

  11. Choi D, Jang DJ (2017) Facile fabrication of CuO/Cu2O composites with high catalytic performances. New J Chem 41:2964–2972. https://doi.org/10.1039/c6nj03949a

    CAS  Article  Google Scholar 

  12. Das TK, Ganguly S, Bhawal P, Remanan S, Mondal S, Das NC (2018) Mussel inspired green synthesis of silver nanoparticles-decorated halloysite nanotube using dopamine: characterization and evaluation of its catalytic activity. Appl Nanosci (Switz) 8:173–186. https://doi.org/10.1007/s13204-018-0658-3

    CAS  Article  Google Scholar 

  13. Deka P, Deka RC, Bharali P (2014) In situ generated copper nanoparticle catalyzed reduction of 4-nitrophenol. New J Chem 38:1789–1793. https://doi.org/10.1039/c3nj01589k

    CAS  Article  Google Scholar 

  14. Denrah S, Sarkar M (2019) Design of experiment for optimization of nitrophenol reduction by green synthesized silver nanocatalyst. Chem Eng Res Des 144:494–504. https://doi.org/10.1016/j.cherd.2019.02.021

    CAS  Article  Google Scholar 

  15. Dhorabe PT, Lataye DH, Ingole RS (2016) Removal of 4-nitrophenol from aqueous solution by adsorption onto activated carbon prepared from Acacia glauca sawdust. Water Sci Technol 73:955–966. https://doi.org/10.2166/wst.2015.575

    CAS  Article  Google Scholar 

  16. Din MI, Arshad F, Hussain Z, Mukhtar M (2017) Green adeptness in the synthesis and stabilization of copper nanoparticles: catalytic, antibacterial, cytotoxicity, and antioxidant activities. Nanoscale Res Lett. https://doi.org/10.1186/s11671-017-2399-8

    Article  Google Scholar 

  17. Dinesh B, Saraswathi R (2017) Electrochemical synthesis of nanostructured copper-curcumin complex and its electrocatalytic application towards reduction of 4-nitrophenol. Sens Actuators B Chem 253:502–512. https://doi.org/10.1016/j.snb.2017.06.149

    CAS  Article  Google Scholar 

  18. Fadillah G, Saleh TA, Wahyuningsih S (2019) Enhanced electrochemical degradation of 4-nitrophenol molecules using novel Ti/TiO2-NiO electrodes. J Mol Liq. https://doi.org/10.1016/j.molliq.2019.111108

    Article  Google Scholar 

  19. Fedorczyk A, Ratajczak J, Kuzmych O, Skompska M (2015) Kinetic studies of catalytic reduction of 4-nitrophenol with NaBH4 by means of Au nanoparticles dispersed in a conducting polymer matrix. J Solid State Electrochem 19:2849–2858. https://doi.org/10.1007/s10008-015-2933-5

    CAS  Article  Google Scholar 

  20. Frolova L (2020) Photocatalytic activity of spinel ferrites CoxFe3−xO4 (0.25 < × < 1) obtained by treatment contact low-temperature non-equilibrium plasma. Appl Nanosci (Switz). https://doi.org/10.1007/s13204-020-01344-8

    Article  Google Scholar 

  21. Fu S, Xia Q, Li S, Ren G, Chai F, Wang C, Qu F (2016) Shape-controlled synthesis of 3D copper nicotinate hollow microstructures and their catalytic properties. RSC Adv 6:18033–18039. https://doi.org/10.1039/c5ra25556b

    CAS  Article  Google Scholar 

  22. Gangarapu M, Sarangapany S, Suja DP, Arava VBR (2018) Highly recyclable and ultra-rapid catalytic reduction of organic pollutants on Ag–Cu@ZnO bimetal nanocomposite synthesized via green technology. Appl Nanosci (Switz) 8:1123–1131. https://doi.org/10.1007/s13204-018-0753-5

    CAS  Article  Google Scholar 

  23. Gawande MB et al (2016) Cu and Cu-based nanoparticles: synthesis and applications in catalysis. Chem Rev 116:3722–3811. https://doi.org/10.1021/acs.chemrev.5b00482

    CAS  Article  Google Scholar 

  24. Gu YE, Zhang Y, Zhang F, Wei J, Wang C, Du Y, Ye W (2010) Investigation of photoelectrocatalytic activity of Cu2O nanoparticles for p-nitrophenol using rotating ring-disk electrode and application for electrocatalytic determination. Electrochim Acta 56:953–958. https://doi.org/10.1016/j.electacta.2010.09.051

    CAS  Article  Google Scholar 

  25. Huang D, Yang G, Feng X, Lai X, Zhao P (2015) Triazole-stabilized gold and related noble metal nanoparticles for 4-nitrophenol reduction. New J Chem 39:4685–4694. https://doi.org/10.1039/c5nj00673b

    CAS  Article  Google Scholar 

  26. Jiji SG, Gopchandran KG (2019) Shape dependent catalytic activity of unsupported gold nanostructures for the fast reduction of 4-nitroaniline. Coll Interface Sci Commun 29:9–16. https://doi.org/10.1016/j.colcom.2018.12.003

    CAS  Article  Google Scholar 

  27. Karlová P, Gelbíčová T, Sedláček I (2016) Substrate interactions between 4-nitrophenol and 4-nitrotoluene during biodegradation of their mixture. Desalin Water Treat 57:2759–2765. https://doi.org/10.1080/19443994.2015.1071285

    CAS  Article  Google Scholar 

  28. Karoshi G, Kolar P, Shah SB, Gilleskie G (2020) Valorization of eggshell waste into supported copper catalysts for partial oxidation of methane. Int J Environ Res 14:61–70. https://doi.org/10.1007/s41742-019-00238-0

    CAS  Article  Google Scholar 

  29. Khan I, Nagarjuna R, Ray Dutta J, Ganesan R (2019) Towards single crystalline, highly monodisperse and catalytically active gold nanoparticles capped with probiotic Lactobacillus plantarum derived lipase. Appl Nanosci (Switz) 9:1101–1109. https://doi.org/10.1007/s13204-018-0735-7

    CAS  Article  Google Scholar 

  30. Kim JH, Chung YK (2013) Copper nanoparticle-catalyzed cross-coupling of alkyl halides with Grignard reagents. Chem Commun 49:11101–11103. https://doi.org/10.1039/c3cc46419a

    CAS  Article  Google Scholar 

  31. Kohantorabi M, Gholami MR (2017) Kinetic analysis of the reduction of 4-nitrophenol catalyzed by CeO2 nanorods-supported CuNi nanoparticles. Ind Eng Chem Res 56:1159–1167. https://doi.org/10.1021/acs.iecr.6b04208

    CAS  Article  Google Scholar 

  32. Konar S, Kalita H, Puvvada N, Tantubay S, Mahto MK, Biswas v, Pathak A (2016) Shape-dependent catalytic activity of CuO nanostructures. J Catal 336:11–22. https://doi.org/10.1016/j.jcat.2015.12.017

    CAS  Article  Google Scholar 

  33. Kulkarni P (2013) Nitrophenol removal by simultaneous nitrification denitrification (SND) using T. pantotropha in sequencing batch reactors (SBR). Bioresour Technol 128:273–280. https://doi.org/10.1016/j.biortech.2012.10.054

    CAS  Article  Google Scholar 

  34. Li M, Su Y, Hu J, Geng H, Wei H, Yang Z, Zhang Y (2016) Hydrothermal synthesis of porous copper microspheres towards efficient 4-nitrophenol reduction. Mater Res Bull 83:329–335. https://doi.org/10.1016/j.materresbull.2016.04.022

    CAS  Article  Google Scholar 

  35. Liu J, Li J, Meng R, Jian P, Wang L (2019) Silver nanoparticles-decorated-Co3O4 porous sheets as efficient catalysts for the liquid-phase hydrogenation reduction of p-nitrophenol. J Coll Interface Sci 551:261–269. https://doi.org/10.1016/j.jcis.2019.05.018

    CAS  Article  Google Scholar 

  36. Mane Gavade SJ, Nikam GH, Sabale SR, Tamhankar BV (2016) Green synthesis of fluorescent silver nanoparticles using Acacia nilotica gum extract for kinetic studies of 4-nitrophenol reduction. Mater Today Proc. https://doi.org/10.1016/j.matpr.2016.11.082

    Article  Google Scholar 

  37. Meghana S, Kabra P, Chakraborty S, Padmavathy N (2015) Understanding the pathway of antibacterial activity of copper oxide nanoparticles. RSC Adv 5:12293–12299. https://doi.org/10.1039/c4ra12163e

    CAS  Article  Google Scholar 

  38. Nabil B, Ahmida EA, Christine C, Julien V, Abdelkrim A (2019) Inorganic-organic-fabrics based polyester/cotton for catalytic reduction of 4-nitrophenol. J Mol Struct 1180:523–531. https://doi.org/10.1016/j.molstruc.2018.11.097

    CAS  Article  Google Scholar 

  39. Narkkun T, Boonying P, Yuenyao C, Amnuaypanich S (2019) Green synthesis of porous polyvinyl alcohol membranes functionalized with l-arginine and their application in the removal of 4-nitrophenol from aqueous solution. J Appl Polym Sci. https://doi.org/10.1002/app.47835

    Article  Google Scholar 

  40. Paisio CE, Quevedo MR, Talano MA, González PS, Agostini E (2014) Application of two bacterial strains for wastewater bioremediation and assessment of phenolics biodegradation. Environ Technol (UK) 35:1802–1810. https://doi.org/10.1080/09593330.2014.882994

    CAS  Article  Google Scholar 

  41. Panova YS, Kashin AS, Vorobev MG, Degtyareva ES, Ananikov VP (2016) Nature of the copper-oxide-mediated C-S cross-coupling reaction: Leaching of catalytically active species from the metal oxide surface. ACS Catal 6:3637–3643. https://doi.org/10.1021/acscatal.6b00337

    CAS  Article  Google Scholar 

  42. Ran J, Zhang J, Yu J, Jaroniec M, Qiao SZ (2014) Earth-abundant cocatalysts for semiconductor-based photocatalytic water splitting. Chem Soc Rev 43:7787–7812. https://doi.org/10.1039/C3CS60425J

    CAS  Article  Google Scholar 

  43. Rehman S, Hur JH, Kim DK (2018) Resistive switching in solution-processed copper oxide (CuxO) by stoichiometry tuning. J Phys Chem C 122:11076–11085. https://doi.org/10.1021/acs.jpcc.8b00432

    CAS  Article  Google Scholar 

  44. Sahu K, Bisht A, Kuriakose S, Mohapatra S (2020a) Two-dimensional CuO–ZnO nanohybrids with enhanced photocatalytic performance for removal of pollutants. J Phys Chem Sol. https://doi.org/10.1016/j.jpcs.2019.109223

    Article  Google Scholar 

  45. Sahu K, Satpati B, Singhal R, Mohapatra S (2020b) Enhanced catalytic activity of CuO/Cu2O hybrid nanowires for reduction of 4-nitrophenol in water. J Phys Chem Sol. https://doi.org/10.1016/j.jpcs.2019.109143

    Article  Google Scholar 

  46. Salavati-Niasari M, Davar FJML (2009) Synthesis of copper and copper (I) oxide nanoparticles by thermal decomposition of a new precursor. Mater Lett 63:441–443

    CAS  Article  Google Scholar 

  47. Sarkar C, Dolui SK (2015) Synthesis of copper oxide/reduced graphene oxide nanocomposite and its enhanced catalytic activity towards reduction of 4-nitrophenol. RSC Adv 5:60763–60769. https://doi.org/10.1039/c5ra10551j

    CAS  Article  Google Scholar 

  48. Sasmal AK, Dutta S, Pal T (2016) A ternary Cu2O–Cu–CuO nanocomposite: a catalyst with intriguing activity. Dalton Trans 45:3139–3150. https://doi.org/10.1039/c5dt03859f

    CAS  Article  Google Scholar 

  49. Schlichter S, Rocha M, Peixoto AF, Pires J, Freire C, Alvarez M (2018) Copper mesoporous materials as highly efficient recyclable catalysts for the reduction of 4-nitrophenol in aqueous media. Polyhedron 150:69–76. https://doi.org/10.1016/j.poly.2018.04.037

    CAS  Article  Google Scholar 

  50. Thawarkar SR, Thombare B, Munde BS, Khupse ND (2018) Kinetic investigation for the catalytic reduction of nitrophenol using ionic liquid stabilized gold nanoparticles. RSC Adv 8:38384–38390. https://doi.org/10.1039/c8ra07404f

    CAS  Article  Google Scholar 

  51. Torkamani F, Azizian S (2016) Green and simple synthesis of Ag nanoparticles loaded onto cellulosic fiber as efficient and low-cost catalyst for reduction of 4-nitrophenol. J Mol Liq 214:270–275. https://doi.org/10.1016/j.molliq.2015.12.071

    CAS  Article  Google Scholar 

  52. Verma AD, Mandal RK, Sinha I (2015) Kinetics of p-nitrophenol reduction catalyzed by PVP stabilized copper nanoparticles. Catal Lett 145:1885–1892. https://doi.org/10.1007/s10562-015-1605-5

    CAS  Article  Google Scholar 

  53. Wang D, Yan B, Song C, Ye T, Wang Y (2018a) Synthesis of hierarchical self-assembled CuO and their structure-enhanced photocatalytic performance. J Electron Mater 47:744–750. https://doi.org/10.1007/s11664-017-5797-x

    CAS  Article  Google Scholar 

  54. Wang S, Gao S, Tang Y, Wang L, Jia D, Liu L (2018b) Facile solid-state synthesis of highly dispersed Cu nanospheres anchored on coal-based activated carbons as an efficient heterogeneous catalyst for the reduction of 4-nitrophenol. J Sol State Chem 260:117–123. https://doi.org/10.1016/j.jssc.2018.01.025

    CAS  Article  Google Scholar 

  55. Wang Z, Liang K, Chan SW, Tang Y (2019) Fabrication of nano CuAl2O4 spinel for copper stabilization and antibacterial application. J Hazard Mater 371:550–557. https://doi.org/10.1016/j.jhazmat.2019.02.053

    CAS  Article  Google Scholar 

  56. Wunder S, Polzer F, Lu Y, Mei Y, Ballauff M (2010) Kinetic analysis of catalytic reduction of 4-nitrophenol by metallic nanoparticles immobilized in spherical polyelectrolyte brushes. J Phys Chem C 114:8814–8820. https://doi.org/10.1021/jp101125j

    CAS  Article  Google Scholar 

  57. Wunder S, Lu Y, Albrecht M, Ballauff M (2011) Catalytic activity of faceted gold nanoparticles studied by a model reaction: evidence for substrate-induced surface restructuring. ACS Catal 1:908–916. https://doi.org/10.1021/cs200208a

    CAS  Article  Google Scholar 

  58. Yadav HM, Lee JJ (2019) One-pot synthesis of copper nanoparticles on glass: applications for non-enzymatic glucose detection and catalytic reduction of 4-nitrophenol. J Sol State Electrochem 23:503–512. https://doi.org/10.1007/s10008-018-4137-2

    CAS  Article  Google Scholar 

  59. Yang X, Zhong H, Zhu Y, Jiang H, Shen J, Huang J, Li C (2014) Highly efficient reusable catalyst based on silicon nanowire arrays decorated with copper nanoparticles. J Mater Chem A 2:9040–9047. https://doi.org/10.1039/c4ta00119b

    CAS  Article  Google Scholar 

  60. Zhang Y et al (2014) Hierarchical architectures of monodisperse porous Cu microspheres: synthesis, growth mechanism, high-efficiency and recyclable catalytic performance. J Mater Chem A Mater 2:11966–11973. https://doi.org/10.1039/c4ta01920b

    CAS  Article  Google Scholar 

  61. Zhang Z et al (2017) The most active Cu facet for low-temperature water gas shift reaction. Nat Commun. https://doi.org/10.1038/s41467-017-00620-6

    Article  Google Scholar 

  62. Zhou Z, Lu C, Wu X, Zhang X (2013) Cellulose nanocrystals as a novel support for CuO nanoparticles catalysts: facile synthesis and their application to 4-nitrophenol reduction. RSC Adv 3:26066–26073. https://doi.org/10.1039/c3ra43006e

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Bu-Ali Sina University for the financial support (Grant Number:97–143).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Saeid Azizian.

Ethics declarations

Conflict of interest

There is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Najafi, M., Azizian, S. Catalytic reduction of 4-nitrophenol on the surface of copper/copper oxide nanoparticles: a kinetics study. Appl Nanosci (2020). https://doi.org/10.1007/s13204-020-01485-w

Download citation

Keywords

  • Copper
  • Copper oxides
  • 4-nitrophenol
  • Sodium borohydride
  • Catalytic reduction
  • Nanoparticles