Miniaturized electrochemical platform with ink-jetted electrodes for multiplexed and interference mitigated biochemical sensing

Abstract

Development of miniaturized devices has yielded many advantages, such as automation, portability and robustness. Out of several detection schemes, electrochemical sensing is the preferred choice due to its selectivity, accuracy and repeatability. In the present work, a miniaturized three-electrode electrochemical device has been fabricated on a glass substrate using inkjet printing of carbon conductive inks for sensing of xanthine (X), hypoxanthine (HX) and uric acid (UA). Hereby, the electroactive graphitized mesoporous carbon modified on conductive carbon paste acted as working electrode. The electrochemical behaviors of these purines were tested using cyclic voltammetry and squarewave voltammetry (SWV). The morphology and structural properties were characterized using scanning electron microscopy. Under the optimized conditions, the linear ranges for X, HX and UA were 2–12, 10–20 and 1–7 µM, respectively. The limit of detections for all these purines are 3.33, 9.99 and 0.01 µM for X, HX and UA, respectively. The developed platform was also utilized for interference with other co-existing bio-chemicals manifesting negligible interference. Further, the platform was successfully tested with human serum samples for X, HX and UA detection. Conclusively, the modified electrodes showed excellent reproducibility and specificity applicable to real samples.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Battelli MG, Polito L, Bortolotti M, Bolognesi A (2016) Xanthine oxidoreductase-derived reactive species: physiological and pathological effects. Oxid Med Cell Longev. https://doi.org/10.1155/2016/3527579

    Article  Google Scholar 

  2. Caussé E, Pradelles A, Dirat B et al (2007) Simultaneous determination of allantoin, hypoxanthine, xanthine, and uric acid in serum/plasma by CE. Electrophoresis 28:381–387. https://doi.org/10.1002/elps.200600205

    CAS  Article  Google Scholar 

  3. Chen CJ, Lü JM, Yao Q (2016) Hyperuricemia-related diseases and xanthine oxidoreductase (XOR) inhibitors: an overview. Med Sci Monit 22:2501–2512. https://doi.org/10.12659/MSM.899852

    CAS  Article  Google Scholar 

  4. Da Costa TH, Song E, Tortorich RP, Choi JW (2015) A paper-based electrochemical sensor using inkjet-printed carbon nanotube electrodes. ECS J Solid State Sci Technol 4:S3044–S3047. https://doi.org/10.1149/2.0121510jss

    CAS  Article  Google Scholar 

  5. Deng M, Zhang X, Zhang Z et al (2014) A gold nanoparticle ink suitable for the fabrication of electrochemical electrode by inkjet printing. J Nanosci Nanotechnol 14:5114–5119. https://doi.org/10.1166/jnn.2014.7208

    CAS  Article  Google Scholar 

  6. Devi R, Narang J, Yadav S, Pundir CS (2012) Amperometric determination of xanthine in tea, coffee, and fish meat with graphite rod bound xanthine oxidase. J Anal Chem 67:273–277. https://doi.org/10.1134/S1061934812030045

    CAS  Article  Google Scholar 

  7. Devi R, Yadav S, Nehra R et al (2013) Electrochemical biosensor based on gold coated iron nanoparticles/chitosan composite bound xanthine oxidase for detection of xanthine in fish meat. J Food Eng 115:207–214. https://doi.org/10.1016/j.jfoodeng.2012.10.014

    CAS  Article  Google Scholar 

  8. Dong Y, Min X, Kim WS (2018) A 3-D-printed integrated PCB-based electrochemical sensor system. IEEE Sens J 18:2959–2966. https://doi.org/10.1109/JSEN.2018.2801459

    CAS  Article  Google Scholar 

  9. Dou ZY, Cui LL, He XQ (2014) Electrochimical determination of uric acid, xanthine and hypoxanthine by poly(xylitol) modified glassy carbon electrode. J Cent South Univ 21:870–876. https://doi.org/10.1007/s11771-014-2012-6

    CAS  Article  Google Scholar 

  10. El Harrad L, Amine A (2016) Amperometric biosensor based on prussian blue and nafion modified screen-printed electrode for screening of potential xanthine oxidase inhibitors from medicinal plants. Enzyme Microb Technol 85:57–63. https://doi.org/10.1016/j.enzmictec.2016.01.006

    CAS  Article  Google Scholar 

  11. Ghanbari K, Nejabati F (2020) Ternary nanocomposite-based reduced graphene oxide/chitosan/Cr2O3 for the simultaneous determination of dopamine, uric acid, xanthine, and hypoxanthine in fish meat. Anal Methods 12:1650–1661. https://doi.org/10.1039/d0ay00161a

    CAS  Article  Google Scholar 

  12. Gong W, Dou ZY, Cui LL et al (2012) Electrocatalytic oxidation and simultaneous determination of uric acid, xanthine, hypoxanthine and dopamine based on β-cyclodextrin modified glassy carbon electrode. Chem Res Chin Univ 28:1047–1053

    CAS  Google Scholar 

  13. Hasoň S, Ostatná V, Fojta M (2020) Simultaneous voltammetric determination of free tryptophan, uric acid, xanthine and hypoxanthine in plasma and urine. Electrochim Acta. https://doi.org/10.1016/j.electacta.2019.135132

    Article  Google Scholar 

  14. Ibrahim H, Temerk Y (2016) A novel electrochemical sensor based on B doped CeO2 nanocubes modified glassy carbon microspheres paste electrode for individual and simultaneous determination of xanthine and hypoxanthine. Sens Actuators B Chem 232:125–137. https://doi.org/10.1016/j.snb.2016.03.133

    CAS  Article  Google Scholar 

  15. Jeerapan I, Poorahong S (2020) Review—flexible and stretchable electrochemical sensing systems: materials, energy sources, and integrations. J Electrochem Soc 167:037573. https://doi.org/10.1149/1945-7111/ab7117

    CAS  Article  Google Scholar 

  16. Komuro N, Takaki S, Suzuki K, Citterio D (2013) Inkjet printed (bio)chemical sensing devices. Anal Bioanal Chem 405:5785–5805. https://doi.org/10.1007/s00216-013-7013-z

    CAS  Article  Google Scholar 

  17. Lavanya N, Sekar C, Murugan R, Ravi G (2016) An ultrasensitive electrochemical sensor for simultaneous determination of xanthine, hypoxanthine and uric acid based on Co doped CeO2 nanoparticles. Mater Sci Eng C 65:278–286. https://doi.org/10.1016/j.msec.2016.04.033

    CAS  Article  Google Scholar 

  18. Lawal AT, Adeloju SB (2012) Progress and recent advances in fabrication and utilization of hypoxanthine biosensors for meat and fish quality assessment: a review. Talanta 100:217–228. https://doi.org/10.1016/j.talanta.2012.07.085

    CAS  Article  Google Scholar 

  19. Lian Q, He Z, He Q et al (2014) Simultaneous determination of ascorbic acid, dopamine and uric acid based on tryptophan functionalized graphene. Anal Chim Acta 823:32–39. https://doi.org/10.1016/j.aca.2014.03.032

    CAS  Article  Google Scholar 

  20. Mujahid A, Khan AI, Afzal A et al (2015) Molecularly imprinted titania nanoparticles for selective recognition and assay of uric acid. Appl Nanosci 5:527–534. https://doi.org/10.1007/s13204-014-0346-x

    CAS  Article  Google Scholar 

  21. Murphy MP, Holmgren A, Larsson NG et al (2011) Unraveling the biological roles of reactive oxygen species. Cell Metab 13:361–366. https://doi.org/10.1016/j.cmet.2011.03.010

    CAS  Article  Google Scholar 

  22. Odewunmi NA, Kawde AN, Ibrahim M (2018) Electrochemically inspired copper(II) complex on disposable graphite pencil electrode for effective simultaneous detection of hypoxanthine, xanthine, and uric acid. Electroanalysis 30:2311–2320. https://doi.org/10.1002/elan.201800397

    CAS  Article  Google Scholar 

  23. Ojani R, Alinezhad A, Abedi Z (2013) A highly sensitive electrochemical sensor for simultaneous detection of uric acid, xanthine and hypoxanthine based on poly(l-methionine) modified glassy carbon electrode. Sens Actuators B Chem 188:621–630. https://doi.org/10.1016/j.snb.2013.07.015

    CAS  Article  Google Scholar 

  24. Pierini GD, Robledo SN, Zon MA et al (2018) Development of an electroanalytical method to control quality in fish samples based on an edge plane pyrolytic graphite electrode. Simultaneous determination of hypoxanthine, xanthine and uric acid. Microchem J 138:58–64. https://doi.org/10.1016/j.microc.2017.12.025

    CAS  Article  Google Scholar 

  25. Rachel M, Kumar KG, Soc JE et al (2020) Modified glassy carbon electrode; an effective sensing platform for the simultaneous determination of xanthine and hypoxanthine poly (amino hydroxy naphthalene sulphonic acid) modified glassy carbon electrode; an effective poly (amino hydroxy naphtha). J Electrochim Soc. https://doi.org/10.1149/1945-7111/ab74c1

    Article  Google Scholar 

  26. Rosati G, Ravarotto M, Sanavia M et al (2019) Inkjet sensors produced by consumer printers with smartphone impedance readout. Sens Bio-Sens Res 26:100308. https://doi.org/10.1016/j.sbsr.2019.100308

    Article  Google Scholar 

  27. Shi L, Layani M, Cai X et al (2018) An inkjet printed Ag electrode fabricated on plastic substrate with a chemical sintering approach for the electrochemical sensing of hydrogen peroxide. Sens Actuators B Chem 256:938–945. https://doi.org/10.1016/j.snb.2017.10.035

    CAS  Article  Google Scholar 

  28. Thangaraj R, Kumar AS (2012) Graphitized mesoporous carbon modified glassy carbon electrode for selective sensing of xanthine, hypoxanthine and uric acid. Anal Methods 4:2162–2171. https://doi.org/10.1039/c2ay25029b

    CAS  Article  Google Scholar 

  29. Vishnu N, Gandhi M, Rajagopal D, Kumar AS (2017) Pencil graphite as an elegant electrochemical sensor for separation-free and simultaneous sensing of hypoxanthine, xanthine and uric acid in fish samples. Anal Methods 9:2265–2274. https://doi.org/10.1039/c7ay00445a

    CAS  Article  Google Scholar 

  30. Wang Y (2011) Simultaneous determination of uric acid, xanthine and hypoxanthine at poly(pyrocatechol violet)/functionalized multi-walled carbon nanotubes composite film modified electrode. Colloids Surf B Biointerfaces 88:614–621. https://doi.org/10.1016/j.colsurfb.2011.07.051

    CAS  Article  Google Scholar 

  31. Wang Y, Tong LL (2010) Electrochemical sensor for simultaneous determination of uric acid, xanthine and hypoxanthine based on poly (bromocresol purple) modified glassy carbon electrode. Sens Actuators B Chem 150:43–49. https://doi.org/10.1016/j.snb.2010.07.044

    CAS  Article  Google Scholar 

  32. Wang EY, Li X, Duan YN (2016) Inkjet printing of copper wire on PET substrate. Appl Nanosci 6:575–580. https://doi.org/10.1007/s13204-015-0461-3

    CAS  Article  Google Scholar 

  33. Yang L, Liu D, Huang J, You T (2014) Simultaneous determination of dopamine, ascorbic acid and uric acid at electrochemically reduced graphene oxide modified electrode. Sens Actuators B Chem 193:166–172. https://doi.org/10.1016/j.snb.2013.11.104

    CAS  Article  Google Scholar 

  34. Zen JM, Lai YY, Yang HH, Senthil Kumar A (2002) Multianalyte sensor for the simultaneous determination of hypoxanthine, xanthine and uric acid based on a preanodized nontronite-coated screen-printed electrode. Sens Actuators B Chem 84:237–244. https://doi.org/10.1016/S0925-4005(02)00031-X

    CAS  Article  Google Scholar 

  35. Zhang F, Wang Z, Zhang Y et al (2012) Simultaneous electrochemical determination of uric acid, xanthine and hypoxanthine based on poly(l-arginine)/graphene composite film modified electrode. Talanta 93:320–325. https://doi.org/10.1016/j.talanta.2012.02.041

    CAS  Article  Google Scholar 

  36. Zhu S, Li H, Niu W, Xu G (2009) Simultaneous electrochemical determination of uric acid, dopamine, and ascorbic acid at single-walled carbon nanohorn modified glassy carbon electrode. Biosens Bioelectron 25:940–943. https://doi.org/10.1016/j.bios.2009.08.022

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge Central Analytical Lab (BITS-Pilani, Hyderabad Campus, Hyderabad, India) for their support in SEM Analysis. Khairunnisa Amreen would like to acknowledge SERB NPDF Scheme (PDF/2018/003658) for the financial assistance.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sanket Goel.

Ethics declarations

Conflict of interest

The authors have no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mohan, J.M., Amreen, K., Javed, A. et al. Miniaturized electrochemical platform with ink-jetted electrodes for multiplexed and interference mitigated biochemical sensing. Appl Nanosci (2020). https://doi.org/10.1007/s13204-020-01480-1

Download citation

Keywords

  • Miniaturized devices
  • Ink-jet printing
  • Multiplexed electrochemical sensing
  • Purines