Photocatalytic visible-light-driven removal of the herbicide imazapyer using nanocomposites based on mesoporous TiO2 modified with Gd2O3

Abstract

In this work, mesoporous Gd2O3-TiO2 nanocomposites synthetized by a sol–gel with vary Gd2O3 concentration were investigated for photo-destruction of imazapyr herbicide waste. Textural, structural and surface properties of the synthetized nanocomposites are verified by N2 physisorption, X-ray diffractometry, HRTEM and various spectroscopic techniques (FTIR, DRS UV–Vis, Raman, PL and XPS). HRTEM micrographs of the calcined Gd2O3-TiO2 revealed the existence of a mesoporous matrix consisting of homogeneously distributed TiO2 nanoparticles (NPs, 12 nm) which are decorated with Ga2O3 nanoparticles. It was found a reverse correlation between the amount of Gd2O3 concentration and the TiO2 nanoparticle size: the formation of smaller TiO2 nanoparticles was favored by the use of high Gd2O3 concentration. The photocatalytic efficiency of the synthetized Gd2O3-TiO2 nanocomposites was appraised in the photo-destruction of imazapyr herbicide below visible-light irradiation. The best herbicide destruction was achieved using 3%Gd2O3-TiO2 photocatalyst and degraded the imazapyr herbicide 20.5 and 8.2 times faster than a commercial P25 and non-promoted TiO2, respectively, indicating that modification of TiO2 with Gd2O3 led to a significant improvement of photocatalyst efficiency. This was explained as due to a lessening of the apparent optical bandgap and the formation of a large amount of surface defect states favoring the separation between electrons and holes. Besides its high efficiency, the 3%Gd2O3-TiO2 photocatalyst demonstrated to be recyclable and stable in the visible-light-driven photocatalytic destruction of imazapyr herbicide.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. Almashhori K, Ali TT, Saeed A, Alwafi R, Aly M, Al-Hazmi FE (2020) Antibacterial and photocatalytic activities of controllable (anatase/rutile) mixed phase TiO2 nanophotocatalysts synthesized via a microwave-assisted sol–gel method. New J Chem 44:562–570

    CAS  Article  Google Scholar 

  2. Antsiferov VN, Filimonova IV, Makarov AM (1999) Effect of Ga in the photocatalytic properties of TiO2. Russ J Appl Chem 72:1019

    Google Scholar 

  3. Atitar MF, Ismail AA, Bahneman D, Afanasev D, Emeline AV (2015) Mesoporous TiO2 nanocrystals as efficient photocatalysts: Impact of calcination temperatures and phase transformations on photocatalytic performances. Chem Eng J 264:417–424

    Article  CAS  Google Scholar 

  4. Bezrodna T, Puchkovska G, Shimanovska V, Khalyavka T, Baran J (2003) Pyridine-TiO2 surface interaction as a probe for surface active centers analysis. Appl Surf Sci 214:222–231

    CAS  Article  Google Scholar 

  5. Challagulla S, Tarafder K, Ganesan R, Roy S (2017) Structure sensitive photocatalytic reduction of nitroarenes over TiO2. Sci Rep 7:8783

    Article  CAS  Google Scholar 

  6. Chen F, Zhang XH, Hu XD, Zhang W, Zeng R, Liu PD, Zhang HQ (2016) Synthesis and characteristics of nanorods of gadolinium hydroxide and gadolinium oxide. J Alloy Compd 664:311–316

    CAS  Article  Google Scholar 

  7. Emeline AV, Kuznetsov VN, Rybchuk VK, Serpone N (2008) Visible-light-active titania photocatalysts: the case of N-doped TiO2s-properties and some fundamental issues. Int J Photoenergy 2008:1–19

    Article  Google Scholar 

  8. Faisal M, Ismail AA, Harraz FA, Bouzid H, Al-Sayari SA, Al-Hajry A (2014) Mesoporous TiO2 based optical sensor for highly sensitive and selective detection and preconcentration of Bi(III) ions. Chem Eng J 124:509–516

    Article  CAS  Google Scholar 

  9. Fox MA, Dulay MT (1993) Heterogeneous photocatalysis. Chem Rev 93:341–357

    CAS  Article  Google Scholar 

  10. Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37–38

    CAS  Article  Google Scholar 

  11. Gregg SJ, Sing KSW (1982) Adsorption, surface area and porosity. Academic Press, London

    Google Scholar 

  12. Ho CH, Tseng CY, Tien LC (2010) Thermoreflectance characterization of β-Ga2O3 thin-film nanostrips. Opt Express 18:16360–16369

    CAS  Article  Google Scholar 

  13. Ismail AA (2005) Synthesis, characterization of Y2O3/Fe2O3/TiO2 nanoparticles by sol-gel method. Appl Catal B Environ 58:115–121

    CAS  Article  Google Scholar 

  14. Ismail AA, Bahnemann DW (2011) Mesoporous titania photocatalysts: preparation, characterization and reaction mechanisms. J Mater Chem 21:11686–11707

    CAS  Article  Google Scholar 

  15. Ismail AA, Robben L, Bahnemann DW (2011) Study of the efficiency of UV and visible-Light photocatalytic oxidation of methanol on mesoporous RuO2-TiO2 nanocomposites. ChemPhysChem 12:982–991

    CAS  Article  Google Scholar 

  16. Ismail AA, Abdelfattah I, Robben L, Bouzid H, Al-Sayari SA, Bahnemann DW (2015) Photocatalytic degradation of Imazapyr using mesoporous Al2O3-TiO2 nanocomposites. Sep Purif Technol 145:147–153

    CAS  Article  Google Scholar 

  17. Ismail AA, Abdelfattah I, Helal A, Al-Sayari SA, Robben L, Bahnemann DW (2016a) Ease synthesis of mesoporous WO3–TiO2 nanocomposites with enhanced photocatalytic performance for photodegradation of herbicide imazapyr under visible light and UV illumination. J Hazard Mater 15(307):43–54

    Article  CAS  Google Scholar 

  18. Ismail AA, Faisal M, Harraz FA, Al-Hajry A, Al-Sehemi AG (2016b) Facile synthesis of visible light-sensitive mesoporous sulfur-doped Ta2O5 nanoparticles and their photocatalytic properties. J Colloid Interface Sci 471:145–154

    CAS  Article  Google Scholar 

  19. Jeon IY, Choi HJ, Jung SM, Seo JM, Kim MJ, Dai LM et al (2013) Large-scale production of edge-selectively functionalized graphene nanoplatelets via ball milling and their use as metal-free electrocatalysts for oxygen reduction reaction. J Am Chem Soc 135:1386

    CAS  Article  Google Scholar 

  20. Kanga J-G, Min B-K, Sohn Y (2015) Synthesis and characterization of Gd(OH)3 and Gd2O3 nanorods. Ceram Int 41:1243–1248

    Article  CAS  Google Scholar 

  21. Kavan L, Rathousky J, Grätzel M, Shklover V, Zukal A (2001) Mesoporous thin film TiO2 electrodes. Micro Meso Mater 44–45:653–659

    Article  Google Scholar 

  22. Kumar A, da Silva JCGE, Kumar K, Swart HC, Maurya SK, Kumar P (2019) Improvement in upconversion/downshifting luminescence of Gd2O3:Ho3+/Yb3+ phosphor through Ca2+/Zn2+ incorporation and optical thermometry studies. Mater Res Bull 112:28–37

    CAS  Article  Google Scholar 

  23. Ladam A, Biben N, Morth CC, Aldon L, Fourcade JO, Jumas JC et al (2017) One-pot ball-milling synthesis of a Ni-Ti-Si based composite as anode material for Li-ion batteries. Electrochim Acta 245:497

    CAS  Article  Google Scholar 

  24. Li G, Li L, Boerio-Goates J, Woodfield BF (2005) High purity anatase TiO2 nanocrystals: near room-temperature synthesis, grain growth kinetics, and surface hydration chemistry. J Am Chem Soc 127:8659–8666

    CAS  Article  Google Scholar 

  25. Li H, Li J, Huo Y (2006) Highly active TiO2N photocatalysts prepared by treating TiO2 precursors in NH3/ethanol fluid under supercritical conditions. J Phys Chem B 110:1559–1565

    CAS  Article  Google Scholar 

  26. Li G, Dimitrijevic NM, Chen L, Rajh T, Gray KA (2008) Role of surface/interfacial Cu2+ sites in the photocatalytic activity of coupled CuO-TiO2 nanocomposites. J Phys Chem C 112:19040–19044

    CAS  Article  Google Scholar 

  27. Liu W, Pusino A, Gessa C (1992) High-performance liquid chromatographic determination of the herbicide imazapyr residues in water and soil. Sci Total Environ 123–124:39–43

    Article  Google Scholar 

  28. Logar M, Jančar B, Suvorov D (2010) Nanocrystalline TiO2 thin films fabricated via a polyelectrolyte multilayer-assisted sol-gel reaction. J Am Ceram Soc 93(11):3679–3685

    CAS  Article  Google Scholar 

  29. Logar M, Bračko I, Potočnik A, Jančar B (2014) Cu and CuO/titanate nanobelt based network assemblies for enhanced visible light photocatalysis. Langmuir 30:4852–4862

    CAS  Article  Google Scholar 

  30. Mohamed RM, Shawky A (2018) CNT supported Mn-doped ZnO nanoparticles: simple synthesis and improved photocatalytic activity for degradation of malachite green dye under visible light. Appl Nanosci 8:1179–1188

    CAS  Article  Google Scholar 

  31. Mohamed RM, Mkhalid IA, Shawky A (2019) Facile synthesis of Pt–In2O3/BiVO4 nanospheres with improved visible-light photocatalytic activity. J Alloy Compd 775:542–548

    CAS  Article  Google Scholar 

  32. Ohsaka T, Izumi F, Fujiki Y (1978) Raman spectrum of anatase, TiO2. J Raman Spectrosc 7:321–324

    Article  Google Scholar 

  33. Osajima JA, Ishiki HM, Takashima K (2008) The photocatalytic degradation of imazapyr. Monatsh Chem 139:7–11

    CAS  Article  Google Scholar 

  34. Park SD, Cho YH, Kim WW, Kim S-J (1999) Understanding of homogeneous spontaneous precipitation for monodispersed TiO2 ultrafine powders with rutile phase aaround room temperature. J Solid State Chem 146:230–238

    CAS  Article  Google Scholar 

  35. Pizarro P, Guillard C, Perol N, Herrmann J-M (2005) Photocatalytic degradation of imazapyr in water: comparison of activities of different supported and unsupported TiO2-based catalysts. Catal Today 101:211–218

    CAS  Article  Google Scholar 

  36. Reddy BM, Ganesh I, Reddy EP, Fernandez A, Smirniotis PG (2001) Surface characterization of Ga2O3–TiO2 and V2O5/Ga2O3–TiO2 catalysts. J Phys Chem B 105:6227–6235

    CAS  Article  Google Scholar 

  37. Robben L, Ismail AA, Lohmeier SJ, Feldhoff A, Bahnemann DW, Buhl J-C (2012) Facile synthesis of highly ordered mesoporous and well crystalline TiO2: impact of different gas atmosphere and calcinations temperature on structural properties. Chem Mater 24:1268–1275

    CAS  Article  Google Scholar 

  38. Rozdin IA, Plotkin SS, Plyushchev VE, Sorokin NI (1975) Interaction of gallium oxide with vanadium pentoxide. Neorg Mater 11:178–179

    CAS  Google Scholar 

  39. Rudraswamy B, Dhananjaya N (2012) Photoluminescence properties of gadolinium oxide nanophosphor. IOP Conf Series 40:012034

    Article  CAS  Google Scholar 

  40. Salinaro A, Emeline A, Hidaka H, Ryabchuk VK, Serpone N (1999) Terminology, relative photonic efficiencies and quantum yields in heterogeneous photocatalysis. Part II: experimental determination of quantum yields. Pure Appl Chem 71:321–335

    CAS  Article  Google Scholar 

  41. Schneider J, Matsuoka M, Takeuchi M, Zhang J, Horiuchi Y, Anpo M, Bahnemann DW (2014) Understanding TiO2 photocatalysis: mechanisms and materials. Chem Rev 114(19):9919–9986

    CAS  Article  Google Scholar 

  42. Serpone N, Salinaro A (1999) Terminology, relative photonic efficiencies and quantum yields in heterogeneous photocatalysis. Part I: suggested protocol. Pure Appl Chem 71:303–320

    CAS  Article  Google Scholar 

  43. Shawky A, Mohamed RM, Mkhalid IA, Awwed NS, Ibrahium HA (2019a) One-pot synthesis of Mn3O4-coupled Ag2WO4 nanocomposite photocatalyst for enhanced photooxidative desulfurization of thiophene under visible light irradiation. Appl Nanosci. https://doi.org/10.1007/s13204-019-01212-0

    Article  Google Scholar 

  44. Shawky A, El-Sheikh SM, Rashed MN, Abdo SM, El-Dosoqy TI (2019b) Exfoliated kaolinite nanolayers as an alternative photocatalyst with superb activity. J Environ Chem Eng 7:1031745

    Article  CAS  Google Scholar 

  45. Shawky A, Alhaddad M, Mohamed RM, Awwad NS, Ibrahiu HA (2020a) Magnetically separable and visible light-active Ag/NiCo2O4 nanorods prepared by a simple route for superior photodegradation of atrazine in water. Prog Natl Sci. https://doi.org/10.1016/j.pnsc.2020.01.021

    Article  Google Scholar 

  46. Shawky A, Mohamed RM, Mkhalid IA, Youssef MA, Awwad NS (2020b) Visible light-responsive Ag/LaTiO3 nanowire photocatalysts for efficient elimination of atrazine herbicide in water. J Mol Liq 299:112163

    CAS  Article  Google Scholar 

  47. Shawky A, Alhaddad M, Al-Namshah KS, Mohamed RM, Awwad NS (2020c) Synthesis of Pt-decorated CaTiO3 nanocrystals for efficient photoconversion of nitrobenzene to aniline under visible light. J Mol Liquids 304:112704

    CAS  Article  Google Scholar 

  48. Souza FL, Teodoro TQ, Vasconcelos VM, Migliorini FL, Gomes PL, Ferreira NG, Baldan MR, Haiduke RL, Lanza MR (2014) Electrochemical oxidation of imazapyr with BDD electrode in titanium substrate. Chemosphere 1(117):596–603

    Article  CAS  Google Scholar 

  49. Streal M, Horner DJ (2000) Adsorption of highly soluble herbicides from water using activated carbon and hypercrosslinked polymers. Process Safe Eniviron Protect 78:363–382

    Article  Google Scholar 

  50. Tauc J (1970) In: Abeles F (ed) Optical properties of solids, vol. 4. North-Holland, Amsterdam, p 272

  51. Termtanun M (2013) Photocatalytic degradation of pesticides using TiO2 nanoparticles, Ph.D. Thesis, University of Nottingham.

  52. Tian N, Zhang Y, Huang H, He Y, Guo Y (2014) Influences of Gd Substitution on the Crystal Structure and Visible-Light-Driven Photocatalytic Performance of Bi2WO6. J Phys Chem C 118:15640–15648

    CAS  Article  Google Scholar 

  53. Tien L-C, Chen W-T, Hoy C-H (2011) Enhanced photocatalytic activity in β-Ga2O3 nanobelts. J Am Ceram Soc 94:3117–3122

    CAS  Article  Google Scholar 

  54. Usami A (2000) Theoretical simulations of optical confinement in dye-sensitized nanocrystalline solar cells. Sol Energy Mater Sol Cells 64:73–83

    CAS  Article  Google Scholar 

  55. Xu AW, Gao Y, Liu HQ (2002) The preparation, characterizatio, and their photocatalytic activites of rare-earth-doped TiO2 nanoparticles. J Catal 207:151–157

    CAS  Article  Google Scholar 

  56. Yamashita H, Harada M, Misaka J, Takeuchi M, Neppolian B, Anpo M (2003) Photocatalytic degradation of organic compounds diluted in water using visible light-responsive metal ion-implanted TiO2 catalysts: Fe ion-implanted TiO2. Catal Today 84:191–196

    CAS  Article  Google Scholar 

  57. Yang C, Wöll Ch (2017) IR spectroscopy applied to metal oxide surfaces: adsorbate vibrations and beyond. Adv Phys 2(2):373–408

    CAS  Google Scholar 

  58. Yu JG, Hai Y, Jaroniec M (2011) Photocatalytic hydrogen production over CuO-modified titania. J Colloid Interface Sci 357:223–228

    CAS  Article  Google Scholar 

  59. Yu C, Wu Z, Liu R, He H, Xue S (2016) The effects of Gd3+ doping on the physical structure and photocatalytic performance of Bi2MoO6 nanoplate crystals. J Phys Chem Solids 93:7–13

    CAS  Article  Google Scholar 

  60. Zhang GZ, Zhang SQ, Wang LL, Liu R, Zeng YX, Xia XN et al (2016) Facile synthesis of bird's nest-like TiO2 microstructure with exposed (001) facets for photocatalytic degradation of methylene blue. Appl Surf Sci 391:228

    Article  CAS  Google Scholar 

  61. Zhang W, Liu Y, Pei X, Chen X (2017) Effects of indium doping on properties of xIn-0.1% Gd-TiO2 photocatalyst synthesized by sol-gel method. J Phys Chem Solids 1(104):45–51

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This project was funded by the Deanship of Scientific Research (DSR) at King Abdulaziz University, Jeddah, Saudi Arabia under grant no. KEP-PhD-37-130-38. The authors, therefore, acknowledge with thanks DSR for technical and financial support.

Author information

Affiliations

Authors

Corresponding author

Correspondence to I. A. Mkhalid.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mkhalid, I.A., Fierro, J.L.G., Mohamed, R.M. et al. Photocatalytic visible-light-driven removal of the herbicide imazapyer using nanocomposites based on mesoporous TiO2 modified with Gd2O3. Appl Nanosci (2020). https://doi.org/10.1007/s13204-020-01479-8

Download citation

Keywords

  • Imazapyr herbicide
  • Photodegradation
  • Mesoporous Gd2O3-TiO2
  • Nanocomposite