Jeffery–Hamel flow of hybrid nanofluids in convergent and divergent channels with heat transfer characteristics

Abstract

Described in this article is a numerical study on the Jeffery–Hamel flow of hybrid fluid consisting of Copper and Graphene oxide nanoparticles. The nanofluid are considered as single-phase fluid and their heat transport performance is also investigated. The flow is carried out in a convergent/divergent channel where the channel walls can stretch or shrink. Additionally, the impact of magnetic field on flow and heat transfer analysis are examined. The flow governing equations are modeled under the Boussinesq approximations using cylindrical polar coordinates. These partial differential equations have been changed into system of ordinary differential equations by means of dimensionless formulation. Later, the numerical solution of governing problem is obtained with a developed code in MATLAB software which employs boundary-value problem solver (bvp4c). The effects of eminent flow parameters on skin friction coefficient, Nusselt number, velocity, and temperature distributions in case of both convergent and divergent channels are plotted and investigated. It is concluded from current analysis that the local skin friction coefficient significantly reduces with higher magnetic parameter. We further observed that the fluid velocity increases with increasing values of Reynolds number in case of convergent channel, while an inverse is noted for divergent channel. The present review indicates that the rate of heat transfer has been enhanced due to greater Prandtl number.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2–3
Fig. 4–5
Fig. 6–7
Fig. 8–9
Fig. 10–11
Fig. 12–13
Fig. 14–15

Abbreviations

\(u\) :

Velocity component in radial direction

\(\left( {r,\,\theta ,\,z} \right)\) :

Cylindrical polar coordinates

\(p\) :

Pressure

\(\alpha\) :

Inclination angle

\(B\left( r \right)\) :

Variable magnetic field

\(\,B_{0}\) :

Magnetic field strength

\(T\) :

Fluid temperature

\(\rho_{{{\text{hnf}}}}\) :

Hybrid nanofluid’s density

\(\mu_{{{\text{hnf}}}}\) :

Hybrid nanofluid’s dynamic viscosity

\(k_{{{\text{hnf}}}}\) :

Hybrid nanofluid’s thermal conductivity

\(\left( {c_{p} } \right)_{{{\text{hnf}}}}\) :

Hybrid nanofluid’s specific heat

\(U_{\max }\) :

Velocity at centerline of channel

\(T_{{\text{w}}}\) :

Surface temperature

\(\mu_{{\text{f}}}\) :

Base fluid’s viscosity

\(\rho_{{\text{f}}}\) :

Base fluid’s density

\(\sigma_{f}\) :

Base fluid’s electric conductivity

\(\varphi_{{{\text{Cu}}}}\) :

Copper’s volume fraction

\(\varphi_{{{\text{Go}}}}\) :

Graphene oxide volume fraction

\(x\) :

Similarity variable

\(f\left( x \right)\) :

Dimensionless velocity

\(g\left( x \right)\) :

Dimensionless temperature

\(f_{\max }\) :

Constant

\(Re\) :

Reynolds number

\(\Pr\) :

Prandtl number

\(M\) :

Magnetic parameter

\(C_{{{\text{fx}}}}\) :

Skin friction coefficient

\(Nu_{{\text{x}}}\) :

Nusselt number

\(\;\tau_{{{\text{w}}}}\) :

Surface shear stress

\(\;q_{{{\text{w}}}}\) :

Surface heat flux

\({\text{hnf}}\) :

Hybrid nanofluid

\({\text{f}}\) :

Base fluid

References

  1. Ahmed J, Shahzad A, Khan M, Ali R (2015) A note on convective heat transfer of an MHD Jeffrey fluid over a stretching sheet. AIP Adv 5(11):117117

    Article  Google Scholar 

  2. Ali R, Shahzad A, Ayub M (2016) Analytic and numerical solutions for axisymmetric flow with partial slip. Eng with Comp 32(1):149–154

    Article  Google Scholar 

  3. Ali A, Nazir M, Awais M, Malik MY (2019) Stratification phenomenon in an inclined rheology of UCM nanomaterial. Phys Lett A 383(18):2201–2206

    CAS  Article  Google Scholar 

  4. Alsagri AS, Hassanpour A, Alrobaian A (2019) Simulation of MHD nanofluid flow in existence of viscous dissipation by means of ADM. Case Stud Therm Eng 14:100494

    Article  Google Scholar 

  5. Aziz T, Mahomed FM, Shahzad A, Ali R (2015) Travelling wave solutions for the unsteady flow of a Third grade fluid induced due to impulsive motion of flat porous plate embedded in a porous medium. J Mech 30(5):527–535

    Article  Google Scholar 

  6. Chamkha AJ, Dogonchi AS, Ganji DD (2019) Magneto-hydrodynamic flow and heat transfer of a hybrid nanofluid in a rotating system among two surfaces in the presence of thermal radiation and Joule heating. AIP Adv. https://doi.org/10.1063/1.5086247

    Article  Google Scholar 

  7. Choi SUS (1995) Enhancing thermal conductivity of fluids with nanoparticles. Dev Appl Non-Newton Flows, ASME, New York 66:99–105

    Google Scholar 

  8. Das PK (2017) A review based on the effect and mechanism of thermal conductivity of normal nanofluids and hybrid nanofluids. J Mol Liq 240:420–446

    CAS  Article  Google Scholar 

  9. Dogonchi AS, Ganji DD (2017) Analytical solution and heat transfer of two-phase nanofluid flow between non-parallel walls considering Joule heating effect. Powd Techn 318:390–400

    CAS  Article  Google Scholar 

  10. Farooq A, Ali R, Benim AC (2018) Soret and Dufour effects on three dimensional Oldroyd-B fluid. Phys A Stat Mech Appl 503:345–354

    Article  Google Scholar 

  11. Ghadikolaei SS, Hosseinzadeh K, Ganji DD, Hatami M (2018) nanofluid analysis in a porous medium under MHD radiative boundary layer and dusty fluid. J Mol Liq 258:172–185

    CAS  Article  Google Scholar 

  12. Hamel G (1917) Spiralförmige Bewegungen zäher Flüssigkeiten. Jahresbericht der deutschen mathematiker-vereinigung 25:34–60

    Google Scholar 

  13. Hayat T, Ullah I, Alsaedi A, Ahmad B (2019) Variable aspects of double stratified MHD flow of second grade nanoliquid with heat generation/absorption: a revised model. Radiat Phys Chem 157:109–115

    CAS  Article  Google Scholar 

  14. Hooper A, Duffy BR, Moffatt HK (1982) Flow of fluid of non-uniform viscosity in converging and diverging channels. J Fluid Mech 117:283–304

    Article  Google Scholar 

  15. Jeffery GB (1915) The two-dimensional steady motion of a viscous fluid. Lond Edinb Dublin Philos Mag J Sci 29(172):455–465

    Article  Google Scholar 

  16. Kato H, Shibanuma H (1980) Diverging converging flows of dilute polymer solutions: 1st report pressure distribution and velocity profile. Bull JSME 23(181):1140–1147

    CAS  Article  Google Scholar 

  17. Li Z, Khan I, Shafee A, Tlili I, Asifa T (2018) Energy transfer of Jeffery-Hamel nanofluid flow between non-parallel walls using Maxwell-Garnetts (MG) and Brinkman models. Energy Rep 4:393–399

    Article  Google Scholar 

  18. Ma Y, Mohebbi R, Rashidi MM, Yang Z (2019) MHD convective heat transfer of Ag-MgO/water hybrid nanofluid in a channel with active heaters and coolers. Int J Heat Mass Transf 137:714–726

    CAS  Article  Google Scholar 

  19. Patel HS, Meher R (2018) Analytical investigation of Jeffery-Hamel flow by modified Adomian decomposition method. Ain Shams Eng J 9(4):599–606

    Article  Google Scholar 

  20. Prasad PD, Kumar PD, Varma SVK (2016) Heat and mass transfer analysis for the MHD flow of nanofluid with radiation absorption. Ain Shams Eng J 9(4):801–813

    Article  Google Scholar 

  21. Sadeghy K, Khabazi N, Taghavi SM (2007) Magnetohydrodynamic (MHD) flows of viscoelastic fluids in converging/diverging channels. Int J Eng Sci 45(11):923–938

    CAS  Article  Google Scholar 

  22. Sarkar J, Ghosh P, Adil A (2015) A review on hybrid nanofluids: recent research, development and applications. Renew Sustain Energy Rev 43:164–177

    CAS  Article  Google Scholar 

  23. Sheikholeslami M (2019) Numerical approach for MHD Al2O3-water nanofluid transportation inside a permeable medium using innovative computer method. Comp Meth Appl Mech Eng 344:306–318

    Article  Google Scholar 

  24. Sidik NAC, Jamil MM, Aziz Japar WMA, Adamu IM (2017) A review on preparation methods, stability and applications of hybrid nanofluids. Renew Sustain Energy Rev 80:1112–1122

    Article  Google Scholar 

  25. Sun B, Zhang Y, Yang D, Li H (2019) Experimental study on heat transfer characteristics of hybrid nanofluid impinging jets. Appl Ther Eng 151:556–566

    CAS  Article  Google Scholar 

  26. Uddin MJ, Sohail A, Bég OA, Ismail AM (2017) Numerical solution of MHD slip flow of a nanofluid past a radiating plate with Newtonian heating: a lie group approach. Alex Eng J 57(4):2455–2464

    Article  Google Scholar 

  27. Usman M, Haq RU, Hamid M, Wang W (2018) Least square study of heat transfer of water based Cu and Ag nanoparticles along a converging/diverging channel. J Mol Liq 249:856–867

    CAS  Article  Google Scholar 

  28. Waini I, Ishak A, Pop I (2019a) Flow and heat transfer along a permeable stretching/shrinking curved surface in a hybrid nanofluid. Phys Scr 94:105219

    CAS  Article  Google Scholar 

  29. Waini I, Ishak A, Pop I (2019b) Hybrid nanofluid flow and heat transfer past a vertical thin needle with prescribed surface heat flux. Int J Numer Meth Heat Fluid Flow 29(12):4875–4894

    Article  Google Scholar 

  30. Waini I, Ishak A, Pop I (2019c) Unsteady flow and heat transfer past a stretching/shrinking sheet in a hybrid nanofluid. Int J Heat Mass Transf 136:288–297

    CAS  Article  Google Scholar 

  31. Zheng D, Wang X, Yuan Q (2019) The flow and heat transfer characteristics in a rectangular channel with convergent and divergent slit ribs. Int J Heat Mass Transf 141:464–475

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Hashim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hafeez, M., Hashim & Khan, M. Jeffery–Hamel flow of hybrid nanofluids in convergent and divergent channels with heat transfer characteristics. Appl Nanosci (2020). https://doi.org/10.1007/s13204-020-01427-6

Download citation

Keywords

  • Jeffery–Hamel flow
  • Hybrid nanofluid
  • Convergent/divergent channel
  • Heat transfer
  • Magnetic field
  • Numerical solution