Electro-conductive and temperature-sensitive poly(N-isopropylacrylamide) composite hydrogels with improved mechanical properties

Abstract

Poly(N-isopropylacrylamide) (PNIPAAm) hydrogel with temperature-sensitive properties can be potentially applied in smart response area. However, poor mechanical and non-conductive characteristic have greatly restricted its widespread application. In this work, PNIPAAm composite hydrogels containing graphene aerogel (GA) and graphene oxide (GO) were prepared via vacuum-assisted backfilling and in-situ polymerization. After an introduction of 0.29 wt% GA and 0.09 wt% GO, the compressive strength and modulus of PNIPAAm hydrogel increase by 100% and 582%, respectively. Moreover, the ternary composite hydrogel has a good electric conductivity, reaching up to 0.52 S/m, due to the electro-conductive network of GA. Combining the good conductivity and itself temperature-sensitive property of PNIPAAm, a smart switch was assembled and could switch off automatically under a high voltage, which has potential applications in sensor area.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig.10
Fig. 11
Fig. 12
Fig. 13

References

  1. Akimoto J, Nakayama M, Okano T (2014) Temperature-responsive polymeric micelles for optimizing drug targeting to solid tumors. J Control Release 193:2–8. https://doi.org/10.1016/j.jconrel.2014.06.062

    Article  CAS  Google Scholar 

  2. Alzari V, Nuvoli D, Scognamillo S, Piccinini M, Gioffredi E, Malucelli G, Marceddu S, Sechi M, Sanna V, Mariani A (2011) Graphene-containing thermoresponsive nanocomposite hydrogels of poly(N-isopropylacrylamide) prepared by frontal polymerization. J Mater Chem 21:8727–8733. https://doi.org/10.1039/c1jm11076d

    Article  CAS  Google Scholar 

  3. Chen Z, To JWF, Wang C, Lu Z, Liu N, Chortos A, Pan L, Wei F, Cui Y (2014) A three-dimensionally interconnected carbon nanotube-conducting polymer hydrogel network for high-performance flexible battery electrodes. Adv Energy Mater 4:1400207. https://doi.org/10.1002/aenm.201400207

    Article  CAS  Google Scholar 

  4. Chen Y, Kang S, Yu JR, Wang Y, Zhu J, Hu ZM (2019) Tough robust dual responsive nanocomposite hydrogel as controlled drug delivery carrier of asprin. J Mech Behav Biomed 92:179–187. https://doi.org/10.1016/j.jmbbm.2019.01.017

    Article  CAS  Google Scholar 

  5. Chuang WJ, Chiu WY, Tai HJ (2012) Temperature-dependent conductive composites: poly(N-isopropylacrylamide-co-N-methylol acrylamide) and carbon black composite films. J Mater Chem 22:20311. https://doi.org/10.1039/c2jm33601d

    Article  CAS  Google Scholar 

  6. Depa K, Strachota A, Slouf M, Brus J, Cimrova V (2017) Synthesis of conductive doubly filled poly(N-isopropylacrylamide)-polyaniline-SiO2 hydrogels. Sens Actuators B-Chem 244:616–634. https://doi.org/10.1016/j.snb.2016.12.121

    Article  CAS  Google Scholar 

  7. Fan SJ, Tang QW, Wu JH, Hu D, Sun H, Lin JM (2008) Two-step synthesis of polyacrylamide/poly(vinyl alcohol)/polyacrylamide/graphite interpenetrating network hydrogel and its swelling, conducting and mechanical properties. J Mater Sci 43:5898–5904. https://doi.org/10.1007/s10853-008-2855-z

    Article  CAS  Google Scholar 

  8. Gil E, Hudson S (2004) Stimuli-reponsive polymers and their bioconjugates. Prog Polym Sci 29:1173–1222. https://doi.org/10.1016/j.progpolymsci.2004.08.003

    Article  CAS  Google Scholar 

  9. Guan Y, Zhang Y (2011) PNIPAM microgels for biomedical applications: from dispersed particles to 3D assemblies. Soft Matter 7:6375. https://doi.org/10.1039/c0sm01541e

    Article  CAS  Google Scholar 

  10. Gulyuz U, Okay O (2015) Self-healing poly(N-isopropylacrylamide) hydrogels. Eur Polym J 72:12–22. https://doi.org/10.1016/j.eurpolymj.2015.09.002

    Article  CAS  Google Scholar 

  11. Haq MA, Su Y, Wang D (2017) Mechanical properties of PNIPAM based hydrogels: a review. Mater Sci Eng C 70:842–855. https://doi.org/10.1016/j.msec.2016.09.081

    Article  CAS  Google Scholar 

  12. He X, Han H, Liu L, Shi W, Lu X, Dong J, Yang W, Lu X (2019) Self-assembled microgels for sensitive and low-fouling detection of streptomycin in complex media. ACS Appl Mater Inter 11:13676–13684. https://doi.org/10.1021/acsami.9b00277

    Article  CAS  Google Scholar 

  13. Hummers WS Jr, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339–1339. https://doi.org/10.1021/ja01539a017

    Article  CAS  Google Scholar 

  14. Li X, Serpe MJ (2016) Understanding the shape memory behavior of self-bending materials and their use as sensors. Adv Funct Mater 26:3282–3290. https://doi.org/10.1002/adfm.201505391

    Article  CAS  Google Scholar 

  15. Lin JM, Tang QW, Wu JH, Li QH (2010) A Multifunctional hydrogel with high-conductivity, pH-responsive, and release properties from polyacrylate/polyptrrole. J Appl Polym Sci 116:1376–1383. https://doi.org/10.1002/app.31642

    Article  CAS  Google Scholar 

  16. Lin HT, Li MS, Ding LY, Huang J (2019) A Fiber Optic biosensor based on hydrogel-immobilized enzyme complex for continuous determination of cholesterol and glucose. Appl Biochem Biotech 187:1569–1580. https://doi.org/10.1007/s12010-018-2897-x

    Article  CAS  Google Scholar 

  17. Liu T, Huang M, Li X, Wang C, Gui C-X, Yu Z-Z (2016) Highly compressible anisotropic graphene aerogels fabricated by directional freezing for efficient absorption of organic liquids. Carbon 100:456–464. https://doi.org/10.1016/j.carbon.2016.01.038

    Article  CAS  Google Scholar 

  18. Liu W, Zhang XY, Wei G, Su ZQ (2018) Reduced Graphene Oxide-Based Double Network Polymeric Hydrogels for Pressure and Temperature Sensing. Sensors 18:3162. https://doi.org/10.3390/s18093162

    Article  CAS  Google Scholar 

  19. Lo CW, Zhu DF, Jiang HR (2011) An infrared-light responsive graphene-oxide incorporated poly(N-isopropylacrylamide) hydrogel nanocomposite. Soft Matter 7:5604–5609. https://doi.org/10.1039/c1sm00011j

    Article  CAS  Google Scholar 

  20. Ma XM, Li YH, Wang WC, Ji Q, Xia YZ (2013) Temperature-sensitive poly(N-isopropylacrylamide)/graphene oxide nanocomposite hydrogels by in situ polymerization with improved swelling capability and mechanical behavior. Eur Polym J 49:389–396. https://doi.org/10.1016/j.eurpolymj.2012.10.034

    Article  CAS  Google Scholar 

  21. Ma H, Zhang H, Cao J, Tong M, Zhao J, Li Y, Xu H, Wu W (2019) Temperature-responsive and piezoresistive performances of poly(N-isopropylacrylamide)-grafted reduced graphene oxide smart fiber. Compos Sci Technol 169:186–194. https://doi.org/10.1016/j.compscitech.2018.11.004

    Article  CAS  Google Scholar 

  22. Moghadam S, Larson RG (2017) Assessing the efficacy of poly(N-isopropylacrylamide) for drug delivery applications using molecular dynamics simulations. Mol Pharm 14:478–491. https://doi.org/10.1021/acs.molpharmaceut.6b00942

    Article  CAS  Google Scholar 

  23. Nagase K, Okano T (2016) Thermoresponsive-polymer-based materials for temperature-modulated bioanalysis and bioseparations. J Mater Chem B 4:6381–6397. https://doi.org/10.1039/c6tb01003b

    Article  CAS  Google Scholar 

  24. Nagase K, Yamato M, Kanazawa H, Okano T (2018) Poly(N-isopropylacrylamide)-based thermoresponsive surfaces provide new types of biomedical applications. Biomaterials 153:27–48. https://doi.org/10.1016/j.biomaterials.2017.10.026

    Article  CAS  Google Scholar 

  25. Qiu L, Liu D, Wang Y, Cheng C, Zhou K, Ding J, Truong VT, Li D (2014) Mechanically robust, electrically conductive and stimuli-responsive binary network hydrogels enabled by superelastic graphene aerogels. Adv Mater 26:3333–3337. https://doi.org/10.1002/adma.201305359

    Article  CAS  Google Scholar 

  26. Shi Y, Ma C, Peng L, Yu G (2015) Conductive “Smart” hybrid hydrogels with PNIPAM and nanostructured conductive polymers. Adv Funct Mater 25:1219–1225. https://doi.org/10.1002/adfm.201404247

    Article  CAS  Google Scholar 

  27. Takahashi H, Okano T (2019) Thermally-triggered fabrication of cell sheets for tissue engineering and regenerative medicine. Adv Drug Deliver Rev 138:276–292. https://doi.org/10.1016/j.addr.2019.01.004

    Article  CAS  Google Scholar 

  28. Torgut G, Biryan F, Demirelli K (2019) Effect of graphite particle fillers on dielectric and conductivity properties of poly(NIPAM-co-HEMA). B Mater Sci 42:244. https://doi.org/10.1007/s12034-019-1915-0

    Article  CAS  Google Scholar 

  29. Tripathi SN, Saini P, Gupta D, Choudhary V (2013) Electrical and mechanical properties of PMMA/reduced graphene oxide nanocomposites prepared via in situ polymerization. J Mater Sci 48:6223–6232. https://doi.org/10.1007/s10853-013-7420-8

    Article  CAS  Google Scholar 

  30. Wei YB, Zeng Q, Wang M, Huang JZ, Guo XR, Wang LS (2019) Near-infrared light-responsive electrochemical protein imprinting biosensor based on a shape memory conducting hydrogel. Biosens Bioelectron 131:156–162. https://doi.org/10.1016/j.bios.2019.02.015

    Article  CAS  Google Scholar 

  31. Xu Y, Sheng K, Li C, Shi G (2010) Self-assembled graphene hydrogel via a one-step hydrothermal process. ACS Nano 4:4324–4330. https://doi.org/10.1021/nn101187z

    Article  CAS  Google Scholar 

  32. Zhang HB, Zheng WG, Yan Q, Yang Y, Wang JW, Lu ZH, Ji GY, Yu ZZ (2010) Electrically conductive polyethylene terephthalate/graphene nanocomposites prepared by melt compounding. Polymer 51:1191–1196. https://doi.org/10.1016/j.polymer.2010.01.027

    Article  CAS  Google Scholar 

  33. Zhang EZ, Wang T, Lian CX, Sun WX, Liu XX, Tong Z (2013) Robust and thermo-response graphene-PNIPAm hybrid hydrogels reinforced by hectorite clay. Carbon 62:117–126. https://doi.org/10.1016/j.carbon.2013.06.003

    Article  CAS  Google Scholar 

  34. Zhang XP, Liu D, Yang L, Zhou LM, You TY (2015) Self-assembled three-dimensional graphene-based materials for dye adsorption and catalysis. J Mater Chem A 3:10031–10037. https://doi.org/10.1039/c5ta00355e

    Article  CAS  Google Scholar 

  35. Zhu AF, Shi Z, Jin JH, Li G, Jiang JM (2012) Synthesis and properties of polyacrylamide-based conducting gels with enhanced mechanical strength. J Macromol Sci B 51:2183–2190. https://doi.org/10.1080/00222348.2012.669679

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the National Natural Science Foundation of China (51973193), the Fundamental Research Funds for the Central Universities (2017FZA4024), and the State Key Laboratory of Chemical Engineering (SKL-ChE-13D) for their financial support.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Cai-Liang Zhang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file2 (MP4 15227 kb)

Supplementary file1 (DOCX 607 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Feng, L., Gu, X. et al. Electro-conductive and temperature-sensitive poly(N-isopropylacrylamide) composite hydrogels with improved mechanical properties. Appl Nanosci 10, 2189–2198 (2020). https://doi.org/10.1007/s13204-020-01358-2

Download citation

Keywords

  • Pnipaam
  • Graphene
  • Conductivity
  • Composite hydrogel
  • Smart switch