Application of CNT-based micropolar hybrid nanofluid flow in the presence of Newtonian heating

Abstract

This research addresses the effects of Hall and ion slip in micropolar hybrid nanofluid in the presence of Newtonian heating. Furthermore, the influence of thermal radiation, Darcy–Forchheimer, viscous dissipation, and variable viscosity is discussed. Total entropy generation rate is calculated. Two distinct nanoparticles such as (SWCNT, MWCNT) used as a hybrid nanofluid. Built-in function bvp4c integrates the solution of simulated hydrodynamic boundary value problems. The effects on axial velocity, angular velocity, temperature field, concentration field, Bejan number, and entropy optimization of different flow field variables are displayed graphically. The nanoparticle fraction boosts the temperature field, Bejan number, and entropy generation, while the axial velocity and microrotation field reduces. Furthermore, the entropy generation enhances with higher the Brinkman number and variable viscosity parameter.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Abbreviations

\({\text{Be}}\) :

Bejan number

\({C_{f}, C_{g}}\) :

Surface drag forces

\(D_{f}\) :

Diffusion coefficient

\(E_{c}\) :

Eckert number

f :

Dimensionless stream function

\(F^{**}\) :

Non-uniform inertia coefficient

\(F_{r}\) :

Inertia coefficient

\({\text{Ha}}\) :

Hartmann number

\(K\) :

Material parameter

\(K^{**}\) :

Permeability of porous medium

\(k^{*}\) :

Mean absorption coefficient

\(\Pr\) :

Prandtl number

\(N_{s} (\eta )\) :

Entropy generation

\(P_{m}\) :

Porosity parameter

\({\mathbf{q}}_{r}\) :

Thermal radiation flux

\({\text{Re}}\) :

Local Reynolds number

\(R_{d}\) :

Radiation parameter

\(\tilde{u}\) :

Along x-axis velocity component

\(\tilde{v}\) :

Along y-axis velocity component

\(\alpha\) :

Velocity ratio parameter

\(\beta_{e} ,\beta_{i}\) :

Hall and ion slip parameter

\(\gamma^{*}\) :

Conjugate parameter

\(\rho_{{{\text{hnf}}}} ,\rho_{f}\) :

Density

\(\phi_{1} ,\phi_{2}\) :

Nanofluid volume fraction

\(\sigma^{*}\) :

Stefan-Boltzmann constant

\(\sigma_{{{\text{nf}}}} ,\sigma_{f}\) :

Electric conductivity

\(\mu_{{{\text{nf}}}} ,\mu_{f}\) :

Viscosity

\(\alpha_{{{\text{hnf}}}}\) :

Nanofluid thermal diffusivity

\(\theta_{w}\) :

Temperature difference

\(\tau_{w}\) :

Shear stress

\((\rho C_{p} )_{{{\text{hnf}}}}\) :

Heat capacity of nanofluid

References

  1. Ahmad S, Nadeem S (2020) Flow analysis by Cattaneo–Christov heat flux in the presence of Thomson and Troian slip condition. Appl Nanosci 1–15.

  2. Akbar NS, Raza M, Ellahi R (2016) Impulsion of induced magnetic field for Brownian motion of nanoparticles in peristalsis. Appl Nanosci 6(3):359–370

    CAS  Article  Google Scholar 

  3. Akhgar A, Toghraie D, Sina N, Afrand M (2019) Developing dissimilar artificial neural networks (ANNs) to prediction the thermal conductivity of MWCNT-TiO2/Water-ethylene glycol hybrid nanofluid. Powder Technol 355:602–610

    CAS  Article  Google Scholar 

  4. Alamri SZ, Ellahi R, Shehzad N, Zeeshan A (2019) Convective radiative plane Poiseuille flow of nanofluid through porous medium with slip: an application of Stefan blowing. J Mol Liq 273:292–304

    CAS  Google Scholar 

  5. Bejan A (1979) A study of entropy generation in fundamental convective heat transfer. J Heat Transfer 101(4):718–725

    Article  Google Scholar 

  6. Bejan A (2013) Entropy generation minimization: the method of thermodynamic optimization of finite-size systems and finite-time processes. CRC Press, Boca Raton

    Google Scholar 

  7. Butt AS, Munawar S, Ali A, Mehmood A (2012) Entropy generation in the Blasius flow under thermal radiation. Phys Scr 85(3):035008

    Article  Google Scholar 

  8. Ellahi R, Hassan M, Zeeshan A, Khan AA (2016) The shape effects of nanoparticles suspended in HFE-7100 over wedge with entropy generation and mixed convection. Appl Nanosci 6(5):641–651

    CAS  Article  Google Scholar 

  9. Ellahi R, Sait SM, Shehzad N, Mobin N (2019) Numerical simulation and mathematical modeling of electro-osmotic Couette-Poiseuille flow of MHD power-law nanofluid with entropy generation. Symmetry 11(8):1038

    CAS  Article  Google Scholar 

  10. Ellahi R, Hussain F, Abbas SA, Sarafraz MM, Goodarzi M, Shadloo MS (2020) Study of two-phase Newtonian nanofluid flow hybrid with hafnium particles under the effects of slip. Inventions 5(1):6

    Article  Google Scholar 

  11. Eringen AC (1996) Theory of micropolar fluids. J Math Mech 16:1–18

    Google Scholar 

  12. Eringen AC (2001) Microcontinuum field theories: II. Fluent media, 2nd edn. Springer Science & Business Media, Berlin

    Google Scholar 

  13. Esfe MH, Arani AAA, Rezaie M, Yan W-M, Karimipour A (2015) Experimental determination of thermal conductivity and dynamic viscosity of Ag–MgO/water hybrid nanofluid. Int Commun Heat Mass Trans 66:189–195

    Article  Google Scholar 

  14. Esfe MH, Emami MRS, Amiri MK (2019) Experimental investigation of effective parameters on MWCNT–TiO2/SAE50 hybrid nanofluid viscosity. J Therm Anal Calorim 137(3):743–757

    Article  Google Scholar 

  15. Farooq MS, Ahmad MJ, Anjum A (2018) Chemically reactive species in squeezed flow through modified Fourier’s and Fick’s laws. Eur Phy J Plus 133(2):63

    Article  Google Scholar 

  16. Feroz N, Shah Z, Islam S, Alzahrani EO, Khan W (2019) Entropy generation of carbon nanotubes flow in a rotating channel with hall and ion-slip effect using effective thermal conductivity model. Entropy 21(1):52

    CAS  Article  Google Scholar 

  17. Hussanan A, Mohd ZS, Ilyas K, Razman MT (2017) Unsteady free convection flow of a micropolar fluid with Newtonian heating: closed form solution. Therm Sci 21(6):2313–2326

    Article  Google Scholar 

  18. Khan AA, Batool R, Kousar N (2019) MHD Micropolar fluid over curved stretching surface with modified Fourier law. Scientia Iranica.

  19. Kumar A, Sugunamma V, Sandeep N (2019) Numerical exploration of MHD radiative Micropolar liquid flow driven by stretching sheet with primary slip: a Comparative Study.". J Non-Equilib Thermodyn 44(2):101–122

    Article  Google Scholar 

  20. Lesnic D, Ingham DB, Pop I (1999) Free convection boundary-layer flow along a vertical surface in a porous medium with Newtonian heating. Int J Heat Mass Transf 42(14):2621–2627

    CAS  Article  Google Scholar 

  21. Lesnic D, Ingham DB, Pop I (2000) Free convection from a horizontal surface in a porous medium with Newtonian heating. J Porous Media 3(3).

  22. Lu D, Ramzan M, Ahmad S, Chung JD, Farooq U (2018) A numerical treatment of MHD radiative flow of Micropolar nanofluid with homogeneous-heterogeneous reactions past a nonlinear stretched surface. Sci Rep 8(1):12431

    Article  Google Scholar 

  23. Lukaszewicz G (1999) Micropolar fluids: theory and applications. Springer Science & Business Media, Berlin

    Google Scholar 

  24. Madhesh D, Parameshwaran R, Kalaiselvam S (2014) Experimental investigation on convective heat transfer and rheological characteristics of Cu–TiO2 hybrid nanofluids. Exp Therm Fluid Sci 52:104–115

    CAS  Article  Google Scholar 

  25. Mandal IC, Mukhopadhyay S (2019) Nonlinear convection in micropolar fluid flow past an exponentially stretching sheet in an exponentially moving stream with thermal radiation. Mech Adv Mater Struct 26(24):2040–2046

    Article  Google Scholar 

  26. Merkin JH (1994) Natural-convection boundary-layer flow on a vertical surface with Newtonian heating. Int J Heat Fluid Flow 15(5):392–398

    Article  Google Scholar 

  27. Nadeem S, Ahmad S, Muhammad N (2017) Cattaneo-Christov flux in the flow of a viscoelastic fluid in the presence of Newtonian heating. J Mol Liq 237:180–184

    CAS  Article  Google Scholar 

  28. Nadeem S, Khan MN, Muhammad N, Ahmad S (2019a) Mathematical analysis of bio-convective micropolar nanofluid. J Comput Des Eng 6(3):233–242

    Google Scholar 

  29. Nadeem S, Hayat T, Khan AU (2019b) Numerical study of 3D rotating hybrid SWCNT–MWCNT flow over a convectively heated stretching surface with heat generation/absorption. Phys Scr 94(7):075202

    CAS  Article  Google Scholar 

  30. Nawaz M, Saleem S, Rana S (2019) Computational study of chemical reactions during heat and mass transfer in magnetized partially ionized nanofluid. J Braz Soc Mech Sci Eng 41(8):326

    Article  Google Scholar 

  31. Oztop HF, Al-Salem K (2012) A review on entropy generation in natural and mixed convection heat transfer for energy systems. Renew Sustain Energy Rev 16(1):911–920

    CAS  Article  Google Scholar 

  32. Pop I, Lesnic D, Ingham DB (2000) Asymptotic solutions for the free convection boundary-layer flow along a vertical surface in a porous medium with Newtonian heating. Hybrid Methods Eng 2(1).

  33. Sarafraz MM, Pourmehran O, Yang B, Arjomandi M, Ellahi R (2020) Pool boiling heat transfer characteristics of iron oxide nano-suspension under constant magnetic field. Int J Therm Sci 147:106131

    CAS  Article  Google Scholar 

  34. Subhani M, Nadeem S (2019) Numerical analysis of micropolar hybrid nanofluid. Appl Nanosci 9(4):447–459

    CAS  Article  Google Scholar 

  35. Suleman M, Ramzan M, Ahmad S, Dianchen L, Muhammad T, Chung JD (2019) A numerical simulation of silver-water nanofluid flow with impacts of Newtonian heating and homogeneous-heterogeneous reactions past a nonlinear stretched cylinder. Symmetry 11(2):295

    CAS  Article  Google Scholar 

  36. Suresh S, Venkitaraj KP, Selvakumar P, Chandrasekar M (2012) Effect of Al2O3–Cu/water hybrid nanofluid in heat transfer. Exp Thermal Fluid Sci 38:54–60

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Shafiq Ahmad.

Ethics declarations

Conflict of interest

Authors have no conflict of interest regarding this publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ahmad, S., Nadeem, S. Application of CNT-based micropolar hybrid nanofluid flow in the presence of Newtonian heating. Appl Nanosci 10, 5265–5277 (2020). https://doi.org/10.1007/s13204-020-01349-3

Download citation

Keywords

  • Darcy–Forchheimer
  • Micropolar hybrid nanofluid
  • Hall and ion slip currents
  • Newtonian heating
  • Partially ionized
  • Entropy generation