Nanostructural, biocolloid and physicochemical stress phenomena factors in iron aluminosilicate aqueous dispersions

Abstract

Theoretical and experimental ideas about transformation mechanisms of iron aluminosilicate compounds of concentrated dispersions, sediments and soils are developed based on a complex physicochemical, microbiological and geomechanical researches in conditions of stress processes (natural and technogenic catastrophes). Leading significance of nano- and microstructures in stress phenomena behavior was shown, the main factors of which are geomechanical and biocolloid dispersion process and the following coagulation-condensation transformations in conditions of elastic–plastic dispersion flow. It was shown, that for iron-contained aluminosilicate dispersions with varying content of surface-active compounds and hydrated iron and silicon oxides with increasing of dispersed phase concentration and its flow, the change in dispersions viscosity in dependence of shear stress occurs in the direction of thixotropic → dilatant-rheopexic → hyperanomalous → ultraanomalous. Influence of ultraanomalous viscosity effect in iron-contained aluminosilicate dispersions on stress phenomena—mud shifts of underwater and land sediments and soils are reviewed. Recommendations for stress phenomena controlling based on detected regularities were provided using the high-dispersed technogenic sludges and waste piles of iron-silicate ore materials.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Frye K (ed) (1981) The encyclopedia of mineralogy, encyclopedia of Earth sciences, vol IV. B Hutchinson Ross Publishing Company, London

    Google Scholar 

  2. Horne RA (1969) Marine chemistry. Wiley, New York

    Google Scholar 

  3. Karato S (2018) Deformation of Earth materials. Cambrige University Press, Cambrige, p 463

    Google Scholar 

  4. Kessler YuM, Zaytsev AL (1989) Solvofobnyie effektyi. Himiya, Leningrad

    Google Scholar 

  5. Kovzun IG, Pertsov NV (2010) Colloid chemistry process contact self-organization in alkaline silicate composites and relation to formation of nanosized surface structures. Nanoscience: colloidal and interfacial aspects. Taylor and Francis Group, London, pp 523–568

    Google Scholar 

  6. Kovzun IG, Protsenko IT, Pertsov NV (2001) Contribution of chemical and physical processes to the formation of alkaline silicate suspensions and their properties. Colloid J 63(2):191

    CAS  Article  Google Scholar 

  7. Kovzun IG, Protsenko IT, Koryakina EV (2002) Vzaimodeystvie mineralizovannyih shahtnyih vod s glinisto-karbonatnyimi porodami. Himiya i tehnologiya vodyi 24(5):492–503

    CAS  Google Scholar 

  8. Kovzun IG, Koryakina EB, Protsenko IT, Pertsov NV (2003) Kolloidno-himicheskie protsessyi v tverdeyuschie schelochnyih kompozitsiyah na osnove alyumosilikatov i shlakov. Kolloidnyiy zhurnal 65(5):589–593

    CAS  Google Scholar 

  9. Kovzun IG, Ulberg ZR, Panko AV, Prokopenko VA, Oleinik VA, Nikipelova EM (2015) Colloid-chemical and nanochemical processes in peloids on basis of ferrous clay minerals. In: Fesenko O, Yatsenko L (eds) Nanophysics, nanophotonics, surface studies, and applications, vol 167. Springer, Cham, p 233. https://doi.org/10.1007/978-3-319-18543-9_15

    Google Scholar 

  10. Li W, Beard BL, Johnson CM (2015) Biologically recycled continental iron is a major component in banded iron formations. Proc Natl Acad Sci 112(27):8193–8198

    CAS  Article  Google Scholar 

  11. Li Y-L, Konhauser KO, Zhai M (2017) The formation of magnetite in the early Archean oceans. Earth Planet Sci Lett 466:103–114

    CAS  Article  Google Scholar 

  12. Nikipelova OM (2011) Colloid-chemical properties of silt peloid and basic principles of their regulation. Dr. (Chemistry) thesis. Kyiv

  13. Olejnik VA, Panko AV, Kovzun IG, Prokopenko VA, Ablets EV, Tsyganovich EA, Nikipelova EM (2016) Processes of metamorphism in Iron-oxide-silicate rocks, their Microbiological, nanochemical and nanostructural transformations. Proceedings of the international conference nanomaterials: applications and properties 5(2), 02NABM01 (4pp). Doi: 10.1109/NAP.2016.7757285

  14. Panko AV, Kovzun IG, Ulberg ZR, Oleinik VA, Nikipelova EM, Babov KD (2016) Colloid-chemical modification of peloids with nano- and microparticles of natural minerals and their practical use. In: Fesenko O, Yatsenko L (eds) Nanophysics, nanophotonics, surface studies, and applications, vol 183. Springer, Cham, p 163. https://doi.org/10.1007/978-3-319-30737-4_14

    Google Scholar 

  15. Panko AV, Kovzun IG, Prokopenko VA, Tsyganovich EA, Olejnik VA, Nikipelova EM (2017) Nano- and microdisperse structures in processes of metamorphism, reduction sintering and component separation of iron-oxide-silicate materials. In: Fesenko O, Yatsenko L (eds) Nanoplasmonics, nano-optics, nanocomposites, and surface studies, vol 57. Springer, Cham, p 743. https://doi.org/10.1007/978-3-319-56422-7_57

    Google Scholar 

  16. Panko AV, Kovzun IG, Prokopenko VA, Tsyganovich OA, Oliinyk VO, Nikipelova OM (2018a) Nano- and microstructural disperse rocks in protective barriers, medicine and balneology. Appl Nanosci 9(5):1–11

    Google Scholar 

  17. Panko AV, Kovzun IG, Nikipelova OM, Prokopenko VA, Tsyganovich OA, Oliinyk VO (2018b) Nanostructural and nanochemical processes in peloid sediments aided with biogeocenosis. In: Fesenko O, Yatsenko L (eds) Nanochemistry, biotechnology, nanomaterials, and their applications. NANO 2017, vol 214. Springer, Cham. https://doi.org/10.1007/978-3-319-92567-7_13

    Google Scholar 

  18. Pertsov NV (1998) Jeffekt Rebindera v zemnoj kore (fiziko-himicheskaja geomehanika) (Rebinder effect in Earth Crust (physicochemical geomechanics). Colloid J 60(5):629–640

    Google Scholar 

  19. Prokopenko VA, Kovzun IG, Ulberg ZR (2014) The creative potential of scientific discovery. Herald Natl Acad Sci Ukraine 10:52–61

    Google Scholar 

  20. Prokopenko VA, Kovzun IG, Ulberg ZR, Tsiganovich OA, Panko AV (2018) Physicochemical geomechanics and nanochemical processes in natural and technogenic minerals. Visnyk Natl Acad Sci Ukraine 2:83–96

    Google Scholar 

  21. Scheidegger AE (1975) Physical aspects of natural catastrophes. Elsevier, Amsterdam

    Google Scholar 

  22. Urev NB, Choy SV (1993) O dvuh tipah techeniya strukturirovannyih dispersnyih sistem. Kolloidnaya himiya 55(3):183–190

    Google Scholar 

  23. Verhoogen J, Turner FJ, Weiss LE et al (1970) The Earth: an introduction to physical geology. Holt Rinehart and Winston Inc., New York

    Google Scholar 

  24. Wang Yu et al (2011) Aggregate of nanoparticles: rheological and mechanical properties. Nanoscale Res Lett. https://doi.org/10.1186/1556-276X-6-114

    Article  Google Scholar 

  25. Weil PK (1970) Oceanography. An introduction to the Marine environment. Wiley, New York

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. V. Panko.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kovzun, I.G., Panko, A.V., Nikipelova, O.M. et al. Nanostructural, biocolloid and physicochemical stress phenomena factors in iron aluminosilicate aqueous dispersions. Appl Nanosci 10, 2855–2866 (2020). https://doi.org/10.1007/s13204-020-01295-0

Download citation

Keywords

  • Iron aluminosilicate
  • Physicochemical geomechanics
  • Stress phenomena
  • Viscosity effect
  • Biocolloid transformation
  • Nanostructural transformation