Urchin-like CuS nanostructures: simple synthesis and structural optimization with enhanced photocatalytic activity under direct sunlight

Abstract

Wastewater remediation by nanostructured photocatalysts represents a critical issue for nanotechnology. In this work, we employed a facile, low-cost, and one-pot co-precipitation strategy to synthesize a pure hexagonal phase of copper sulfide (CuS) nanostructures at a relatively lower temperature. The produced CuS investigated using different instrumentation. The results confirmed that CuS crystallized in urchin-like nanostructures with a single hexagonal phase exhibiting a band gap of 2.22 eV. The photocatalytic performance of the prepared CuS examined for the photodegradation of malachite green dye (MG) employing direct sunlight illumination. The outcomes showed that the produced CuS featured photodegradation efficiency of 95.5% and 67.2% mineralization within 90 min. Moreover, the kinetic studies of MG photodegradation and the applicability of CuS photocatalyst displayed a pseudo-first-order reaction with high stability at a decent efficiency. This work opens the door for using only prepared single-phase metal chalcogenides in water remediation under direct sunlight.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Data availability

The raw/processed data required to reproduce these findings cannot be shared at this time as the data also form part of an ongoing study.

References

  1. Alam SN, Sharma N, Kumar L (2017) Synthesis of graphene oxide (GO) by modified hummers method and its thermal reduction to obtain reduced graphene oxide (rGO)*. Graphene 06:1–18. https://doi.org/10.4236/graphene.2017.61001

    Article  CAS  Google Scholar 

  2. Azzam AB, El-Sheikh SM, Geioushy RA et al (2019) Facile fabrication of a novel BiPO4 phase junction with enhanced photocatalytic performance towards aniline blue degradation. RSC Adv 9:17246–17253. https://doi.org/10.1039/C9RA02315A

    Article  CAS  Google Scholar 

  3. Barick KC, Gawali SL, Sarkar A, Kunwar A (2016) Pluronic stabilized Fe3O4 magnetic nanoparticles for intracellular delivery of curcumin †. RSC Adv 6:98674–98681. https://doi.org/10.1039/C6RA21207G

    Article  CAS  Google Scholar 

  4. Bin KW, Lee SH, Cho M, Lee Y (2017) Facile and cost-effective CuS dendrite electrode for non-enzymatic glucose sensor. Sens Actuators B Chem 249:161–167. https://doi.org/10.1016/j.snb.2017.04.089

    Article  CAS  Google Scholar 

  5. Borthakur P, Boruah PK, Darabdhara G, Sengupta P, Das MR, Boronin AI, Kibis LS, Kozlova MN, Fedorov VE (2016) Microwave assisted synthesis of CuS-reduced graphene oxide nanocomposite with efficient photocatalytic activity towards azo dye degradation. J Environ Chem Eng 4:4600–4611. https://doi.org/10.1016/j.jece.2016.10.023

    Article  CAS  Google Scholar 

  6. Brunauer S, Deming LS, Edwards Deming W, Teller E (1940) On a theory of the van der Waals adsorption of gases. J Am Chem Soc 62:1723–1732. https://doi.org/10.1021/ja01864a025

    Article  CAS  Google Scholar 

  7. Cai Z, Zhou Y, Ma S et al (2017) Enhanced visible light photocatalytic performance of g-C3N4/CuS p-n heterojunctions for degradation of organic dyes. J Photochem Photobiol A Chem 348:168–178. https://doi.org/10.1016/j.jphotochem.2017.08.031

    Article  CAS  Google Scholar 

  8. Chapel A, Ben DS, Therias S et al (2016) Effect of ZnO nanoparticles on the photochemical and electronic stability of P3HT used in polymer solar cells. Sol Energy Mater Sol Cells 155:79–87. https://doi.org/10.1016/j.solmat.2016.04.052

    Article  CAS  Google Scholar 

  9. Culp SJ, Beland FA (1996) Malachite green: a toxicological review. J Am Coll Toxicol 15:219–238

    Article  Google Scholar 

  10. Cuong NM, Ishizaka S, Kitamura N (2012) Donnan electric potential dependence of intraparticle diffusion of malachite green in single cation exchange resin particles: a laser trapping-microspectroscopy study. Am J Anal Chem 3:188–194. https://doi.org/10.4236/ajac.2012.33027

    Article  CAS  Google Scholar 

  11. Das TR, Patra S, Madhuri R, Sharma PK (2018) Bismuth oxide decorated graphene oxide nanocomposites synthesized via sonochemical assisted hydrothermal method for adsorption of cationic organic dyes. J Colloid Interface Sci 509:82–93. https://doi.org/10.1016/j.jcis.2017.08.102

    Article  CAS  Google Scholar 

  12. de Santiago Colín DM, Martínez-Chávez LA, Cuán Á et al (2018) Sonochemical coupled synthesis of Cr-TiO2 supported on Fe3O4 structures and chemical simulation of the degradation mechanism of Malachite Green dye. J Photochem Photobiol A Chem 364:250–261. https://doi.org/10.1016/j.jphotochem.2018.06.004

    Article  CAS  Google Scholar 

  13. Ghanbari D, Salavati-Niasari M, Esmaeili-Zare M et al (2014) Hydrothermal synthesis of CuS nanostructures and their application on preparation of ABS-based nanocomposite. J Ind Eng Chem 20:3709–3713. https://doi.org/10.1016/j.jiec.2013.12.070

    Article  CAS  Google Scholar 

  14. He HY (2016) Facile synthesis of ultrafine CuS nanocrystalline/TiO2: Fe nanotubes hybrids and their photocatalytic and Fenton-like photocatalytic activities in the dye degradation. Microporous Mesoporous Mater 227:31–38. https://doi.org/10.1016/j.micromeso.2016.02.038

    Article  CAS  Google Scholar 

  15. Hong X, Xu Z, Zhang F et al (2017) Sputtered seed-assisted growth of CuS nanosheet arrays as effective counter electrodes for quantum dot-sensitized solar cells. Mater Lett 203:73–76. https://doi.org/10.1016/j.matlet.2017.05.078

    Article  CAS  Google Scholar 

  16. Hsueh CL, Huang YH, Wang CC, Chen CY (2006) Photoassisted fenton degradation of nonbiodegradable azo-dye (Reactive Black 5) over a novel supported iron oxide catalyst at neutral pH. J Mol Catal A Chem 245:78–86. https://doi.org/10.1016/j.molcata.2005.09.044

    Article  CAS  Google Scholar 

  17. Hu XS, Shen Y, Xu LH et al (2016) Preparation of flower-like CuS by solvothermal method and its photodegradation and UV protection. J Alloys Compd 674:289–294. https://doi.org/10.1016/j.jallcom.2016.03.047

    Article  CAS  Google Scholar 

  18. Jiang H, Hu Q, Cai J et al (2019) Synthesis and dyeing properties of indophenine dyes for polyester fabrics. Dye Pigment 166:130–139. https://doi.org/10.1016/j.dyepig.2019.03.025

    Article  CAS  Google Scholar 

  19. Khedr TM, El-Sheikh SM, Hakki A et al (2017) Highly active non-metals doped mixed-phase TiO2 for photocatalytic oxidation of ibuprofen under visible light. J Photochem Photobiol A Chem 346:530–540. https://doi.org/10.1016/j.jphotochem.2017.07.004

    Article  CAS  Google Scholar 

  20. Khedr TM, El-Sheikh SM, Ismail AA, Bahnemann DW (2019) Photodegradation of 4-aminoantipyrine over nano-titania heterojunctions using solar and LED irradiation sources. J Environ Chem Eng 7:102797. https://doi.org/10.1016/j.jece.2018.11.042

    Article  CAS  Google Scholar 

  21. Konstantinou IK, Albanis TA (2004) TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations: a review. Appl Catal B Environ 49:1–14. https://doi.org/10.1016/j.apcatb.2003.11.010

    Article  CAS  Google Scholar 

  22. Mamiyev ZQ, Balayeva NO (2016) CuS nanoparticles synthesized by a facile chemical route under different pH conditions. Mendeleev Commun 26:235–237. https://doi.org/10.1016/j.mencom.2016.05.004

    Article  CAS  Google Scholar 

  23. Mohamed RM, Shawky A (2018) CNT supported Mn-doped ZnO nanoparticles: simple synthesis and improved photocatalytic activity for degradation of malachite green dye under visible light. Appl Nanosci 8:1179–1188. https://doi.org/10.1007/s13204-018-0742-8

    Article  CAS  Google Scholar 

  24. Mohamed RM, Shawky A, Aljahdali MS (2016) Palladium/zinc indium sulfide microspheres: enhanced photocatalysts prepare methanol under visible light conditions. J Taiwan Inst Chem Eng 65:498–504. https://doi.org/10.1016/j.jtice.2016.05.027

    Article  CAS  Google Scholar 

  25. Mohamed RM, Shawky A, Mkhalid IA (2017) Facile synthesis of MgO and Ni-MgO nanostructures with enhanced adsorption of methyl blue dye. J Phys Chem Solids 101:50–57. https://doi.org/10.1016/j.jpcs.2016.10.009

    Article  CAS  Google Scholar 

  26. Mohamed RM, Mkhalid IA, Shawky A (2019) Facile synthesis of Pt–In2O3/BiVO4 nanospheres with improved visible-light photocatalytic activity. J Alloys Compd 775:542–548. https://doi.org/10.1016/j.jallcom.2018.10.181

    Article  CAS  Google Scholar 

  27. Mohanty SP, Nookala M (2017) Investigation of in situ grown and carbon-free copper sulfide electrode for rechargeable lithium battery. J Electroanal Chem 794:8–14. https://doi.org/10.1016/j.jelechem.2017.03.044

    Article  CAS  Google Scholar 

  28. Munce CG, Parker GK, Holt SA, Hope GA (2007) A Raman spectroelectrochemical investigation of chemical bath deposited CuxS thin films and their modification. Colloids Surf A Physicochem Eng Asp 295:152–158. https://doi.org/10.1016/j.colsurfa.2006.08.045

    Article  CAS  Google Scholar 

  29. Pal M, Mathews NR, Sanchez-Mora E et al (2015) Synthesis of CuS nanoparticles by a wet chemical route and their photocatalytic activity. J Nanopart Res 17:301–312. https://doi.org/10.1007/s11051-015-3103-5

    Article  CAS  Google Scholar 

  30. Pan C, Takata T, Kumamoto K et al (2016) Band engineering of perovskite-type transition metal oxynitrides for photocatalytic overall water splitting. J Mater Chem A 4:4544–4552. https://doi.org/10.1039/c5ta10612e

    Article  CAS  Google Scholar 

  31. Patterson AL (1939) The scherrer formula for X-ray particle size determination. Phys Rev 56:978–982. https://doi.org/10.1103/PhysRev.56.978

    Article  CAS  Google Scholar 

  32. Prado AGS, Costa LL (2009) Photocatalytic decouloration of malachite green dye by application of TiO2 nanotubes. J Hazard Mater 169:297–301. https://doi.org/10.1016/j.jhazmat.2009.03.076

    Article  CAS  Google Scholar 

  33. Ramamoorthy C, Rajendran V (2017) Synthesis and characterization of CuS nanostructures: Structural, optical, electrochemical and photocatalytic activity by the hydro/solvothermal process. Int J Hydrog Energy 42:26454–26463. https://doi.org/10.1016/j.ijhydene.2017.07.078

    Article  CAS  Google Scholar 

  34. Ramanna L, Rawat I, Zerrouki D, Bux F (2018) A novel organic dye-based approach to increase photon flux density for enhanced microalgal pigment production. J Clean Prod 198:187–194. https://doi.org/10.1016/j.jclepro.2018.07.016

    Article  CAS  Google Scholar 

  35. Ray SK, Dhakal D, Lee SW (2018) Insight into malachite green degradation, mechanism, and pathways by morphology tuned α-NiMoO4 photocatalyst. Photochem Photobiol 94:552–563. https://doi.org/10.1111/ijlh.12426

    Article  CAS  Google Scholar 

  36. Riyaz S, Parveen A, Azam A (2016) Microstructural and optical properties of CuS nanoparticles prepared by sol–gel route. Perspect Sci 8:632–635. https://doi.org/10.1016/j.pisc.2016.06.041

    Article  Google Scholar 

  37. Safrani T, Jopp J, Golan Y (2017) A Comparative study of the structure and optical properties of copper sulfide thin films chemically deposited on various substrates. RSC Adv 3:23066–23074. https://doi.org/10.1039/b000000x

    Article  Google Scholar 

  38. Saranya M, Ramachandran R, Kollu P et al (2013) A template-free facile approach for the synthesis of CuS-rGO nanocomposites towards enhanced photocatalytic reduction of organic contaminants and textile effluents. RSC Adv 5:15831–15840. https://doi.org/10.1039/c4ra09029b

    Article  Google Scholar 

  39. Saranya M, Ramachandran R, Samuel EJJ et al (2015) Enhanced visible light photocatalytic reduction of organic pollutant and electrochemical properties of CuS catalyst. Powder Technol 279:209–220. https://doi.org/10.1016/j.powtec.2015.03.041

    Article  CAS  Google Scholar 

  40. Shawky A, El-Sheikh SM, Rashed MN et al (2019a) Exfoliated kaolinite nanolayers as an alternative photocatalyst with superb activity. J Environ Chem Eng 7:103174. https://doi.org/10.1016/j.jece.2019.103174

    Article  CAS  Google Scholar 

  41. Shawky A, Mohamed RM, Mkhalid IA et al (2019b) Visible light-responsive Ag/LaTiO3 nanowire photocatalysts for efficient elimination of atrazine herbicide in water. J Mol Liq. https://doi.org/10.1016/j.molliq.2019.112163

    Article  Google Scholar 

  42. Shi J, Zhou X, Liu Y et al (2014) Sonochemical synthesis of CuS/reduced graphene oxide nanocomposites with enhanced absorption and photocatalytic performance. Mater Lett 126:220–223. https://doi.org/10.1016/j.matlet.2014.04.051

    Article  CAS  Google Scholar 

  43. Song W, Nie G, Ji W et al (2016) Synthesis of bifunctional reduced graphene oxide/CuS/Au composite nanosheets for in situ monitoring of a peroxidase-like catalytic reaction by surface-enhanced Raman spectroscopy. RSC Adv 6:54456–54462. https://doi.org/10.1039/c6ra09471f

    Article  CAS  Google Scholar 

  44. Tanveer M, Cao C, Aslam I et al (2014) Effect of the morphology of CuS upon the photocatalytic degradation of organic dyes. RSC Adv 4:63447–63456. https://doi.org/10.1039/c4ra04940c

    Article  CAS  Google Scholar 

  45. Tauc J (2012) Optical properties and electronic structure of amorphous semiconductors. Opt Prop Solids 627:123–136. https://doi.org/10.1007/978-1-4757-1123-3_5

    Article  Google Scholar 

  46. Thuy UTD, Liem NQ, Parlett CMA et al (2014) Synthesis of CuS and CuS/ZnS core/shell nanocrystals for photocatalytic degradation of dyes under visible light. Catal Commun 44:62–67. https://doi.org/10.1016/j.catcom.2013.07.030

    Article  CAS  Google Scholar 

  47. Trabelsi H, Atheba P, Gbassi GK et al (2012) Original article sunlight-activated photocatalysis of malachite green using a TiO2/cellulosic fiber. Int J Hazard Mater 1:6–10

    Google Scholar 

  48. Venkadesh A, Radhakrishnan S, Mathiyarasu J (2017) Eco-friendly synthesis and morphology-dependent superior electrocatalytic properties of CuS nanostructures. Electrochim Acta 246:544–552. https://doi.org/10.1016/j.electacta.2017.06.077

    Article  CAS  Google Scholar 

  49. Wang B, Zhang Z, Chang K et al (2018) New deformation-induced nanostructure in silicon. Nano Lett 18:4611–4617. https://doi.org/10.1021/acs.nanolett.8b01910

    Article  CAS  Google Scholar 

  50. Yang P, Zhao D, Margolese DI et al (1999) Block copolymer templating syntheses of mesoporous metal oxides with large ordering lengths and semicrystalline framework. Chem Mater 11:2813–2826. https://doi.org/10.1021/cm990185c

    Article  CAS  Google Scholar 

  51. Zeevi B, Berant M (2015) TiO2/graphene composite photocatalysts for NOx removal: a comparison of surfactant-stabilized graphene and reduced graphene oxide. Appl Catal B Environ 81:560. https://doi.org/10.1016/j.apcatb.2015.07.009

    Article  CAS  Google Scholar 

  52. Zhang Z, Huo F, Zhang X, Guo D (2012a) Fabrication and size prediction of crystalline nanoparticles of silicon induced by nanogrinding with ultrafine diamond grits. Scr Mater 67:657–660. https://doi.org/10.1016/j.scriptamat.2012.07.016

    Article  CAS  Google Scholar 

  53. Zhang Z, Song Y, Xu C, Guo D (2012b) A novel model for undeformed nanometer chips of soft-brittle HgCdTe films induced by ultrafine diamond grits. Scr Mater 67:197–200. https://doi.org/10.1016/j.scriptamat.2012.04.017

    Article  CAS  Google Scholar 

  54. Zhang Z, Huo Y, Guo D (2013) A model for nanogrinding based on direct evidence of ground chips of silicon wafers. Sci China Technol Sci 56:2099–2108. https://doi.org/10.1007/s11431-013-5286-2

    Article  CAS  Google Scholar 

  55. Zhang G, Wurtzler EM, He X et al (2015a) Identification of TiO2 photocatalytic destruction byproducts and reaction pathway of cylindrospermopsin. Appl Catal B Environ 163:591–598. https://doi.org/10.1016/j.apcatb.2014.08.034

    Article  CAS  Google Scholar 

  56. Zhang Z, Guo D, Wang B et al (2015b) A novel approach of high speed scratching on silicon wafers at nanoscale depths of cut. Sci Rep 5:16395

    Article  CAS  Google Scholar 

  57. Zhang Z, Wang B, Kang R et al (2015) Changes in surface layer of silicon wafers from diamond scratching. CIRP Ann 64:349–352. https://doi.org/10.1016/j.cirp.2015.04.005

    Article  Google Scholar 

  58. Zhang Z, Wang B, Zhou P et al (2016a) A novel approach of chemical mechanical polishing for cadmium zinc telluride wafers. Sci Rep 6:26891

    Article  CAS  Google Scholar 

  59. Zhang Z, Wang B, Zhou P et al (2016b) A novel approach of chemical mechanical polishing using environment-friendly slurry for mercury cadmium telluride semiconductors. Sci Rep 6:22466

    Article  CAS  Google Scholar 

  60. Zhang Z, Cui J, Wang B et al (2017) A novel approach of mechanical chemical grinding. J Alloys Compd 726:514–524. https://doi.org/10.1016/j.jallcom.2017.08.024

    Article  CAS  Google Scholar 

  61. Zhang Z, Shi Z, Du Y et al (2018) A novel approach of chemical mechanical polishing for a titanium alloy using an environment-friendly slurry. Appl Surf Sci 427:409–415. https://doi.org/10.1016/j.apsusc.2017.08.064

    Article  CAS  Google Scholar 

  62. Zhang Z, Cui J, Zhang J et al (2019) Environment friendly chemical mechanical polishing of copper. Appl Surf Sci 467–468:5–11. https://doi.org/10.1016/j.apsusc.2018.10.133

    Article  CAS  Google Scholar 

  63. Zhao K, Lu Y, Lu N et al (2013) Design of H3PW12O40/TiO2 nano-photocatalyst for efficient photocatalysis under simulated sunlight irradiation. Appl Surf Sci 285:616–624. https://doi.org/10.1016/j.apsusc.2013.08.101

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support from the Egyptian Academy of Scientific Research and Technology (ASRT) under the program Scientists for Next Generation (SNG) and the excellent support from CMRDI fund from the Egyptian ministry of higher education and scientific research.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Ahmed Shawky or S. M. El-Sheikh.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding authors state that there is no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 622 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shawky, A., El-Sheikh, S.M., Gaber, A. et al. Urchin-like CuS nanostructures: simple synthesis and structural optimization with enhanced photocatalytic activity under direct sunlight. Appl Nanosci 10, 2153–2164 (2020). https://doi.org/10.1007/s13204-020-01283-4

Download citation

Keywords

  • Co-precipitation
  • Synthesis
  • Urchin-like CuS
  • Photocatalyst
  • Water remediation