Skip to main content

Advertisement

Log in

Optimal configurations for interacting carbon nanotori

  • Original Article
  • Published:
Applied Nanoscience Aims and scope Submit manuscript

Abstract

The optimal or lowest energy configuration of two carbon nanotori is investigated. With the assumption that the tori are symmetrically situated and parallel with the centres lying on their common axis, the interaction energy between the two tori is evaluated using the continuum approximation and the Lennard-Jones potential function. This mathematical modelling approach provides a fast and accurate computation as compared to other simulation methods. The numerical results obtained determine the most stable configuration corresponding to the minimum energies for five different sized tori, and a relation between the major and minor radii of the tori and the equilibrium position is demonstrated. The interaction energies between two nanotori determined here might be utilised to model many promising devices for future developments in nano and biotechnology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Baowan D, Hill JM (2007) Force distribution for double-walled carbon nanotubes. Z Angew Math Phys 58:857–875

    Article  Google Scholar 

  • Chan Y, Cox BJ, Hill JM (2012) Carbon nanotori as traps for atoms and ions. Physica B 407:3479–3483

    Article  Google Scholar 

  • Cox BJ, Hill JM (2007) New carbon molecules in the form of elbow-connected nanotori. J Phys Chem C 111:10855–10860

    Article  Google Scholar 

  • Dunlap BI (1992) Connecting carbon tubules. Phys Rev B 46:1933–1936

    Article  Google Scholar 

  • Hilder TA, Hill JM (2007) Orbiting atoms and \(\text{ C }_{60}\) fullerenes inside carbon nanotori. J Appl Phys 101:064319

    Article  Google Scholar 

  • Hilder TA, Hill JM (2007) Orbiting nanosectors inside carbon nanotori. Nano Lett 2:50–53

    Google Scholar 

  • Hilder TA, Hill JM (2007) Oscillating carbon nanotori along carbon nanotubes. Phys Rev B 75:125415

    Article  Google Scholar 

  • Lennard-Jones JE (1931) Cohesion. Proc Phys Soc 43:461–482

    Article  Google Scholar 

  • Latil S, Roche S, Rubio A (2003) Persistent currents in carbon nanotube based rings. Phys Rev B 67:165420

    Article  Google Scholar 

  • Liu CP, Xu N (2008) Magnetic response of chiral carbon nanotori: the dependence of torus radius. Physica B 403:2884–2887

    Article  Google Scholar 

  • Liu J, Dai H, Hafner JH, Colbert DT, Smalley RE (1997) Fullerene ‘crop circles’. Nature 385:780–781

    Article  Google Scholar 

  • Liu L, Liu F, Zhao J (2014) Curved carbon nanotubes: from unique geometries to novel properties and peculiar applications. Nano Res 7:626–657

    Article  Google Scholar 

  • Lusk MT, Hamm N (2007) Toroidal carbon nanotubes with encapsulated atomic metal loops. Phys Rev B 76:125422

    Article  Google Scholar 

  • Maitland GC, Rigby M, Smith EB, Wakeham WA (1981) Intermolecular forces: their origin and determination. Clarendon Press, Oxford

    Google Scholar 

  • Martel R, Shea HR, Avouris P (1999) Ring formation in single-wall carbon nanotubes. J Phys Chem B 103:7551–7556

    Article  Google Scholar 

  • Ohshima H, Hyono A (2009) The van der waals interaction between two torus-shaped colloidal particles. J Colloid Interface Sci 332:251–253

    Article  Google Scholar 

  • Saito R, Dresselhaus G, Dresselhaus MS (1998) Physical properties of carbon nanotubes. Imperial College Press, London

    Book  Google Scholar 

  • Sano M, Kamino A, Okamura J, Shinkai S (2001) Ring closure of carbon nanotubes. Science 293:1299–1301

    Article  Google Scholar 

  • Sarapat P, Baowan D, Hill JM (2018) Equilibrium location for spherical dna and toroidal cyclodextrin. Appl Nanosci 8:537–544

    Article  Google Scholar 

  • Sarapat P, Baowan D, Hill JM (2018) Interaction energy for a fullerene encapsulated in a carbon nanotorus. Z Angew Math Phys 69:77

    Article  Google Scholar 

  • Sarapat P, Thamwattana N, Baowan D (2016) Continuum modelling for adhesion between paint surfaces. Int J Adhes Adhes 70:234–238

    Article  Google Scholar 

  • Sumetpipat K, Lee RKF, Cox BJ, Hill JM, Baowan D (2014) Carbon nanotori and nanotubes encapsulating carbon atomic-chains. J Math Chem 52:1817–1830

    Article  Google Scholar 

  • Tang X (2011) Persistent current in a carbon nanotube torus encapsulated with a carbon ring. J Phys Condens Mater 23:105302

    Article  Google Scholar 

  • Yazgan E, Tasci E, Malcioglu OB, Erkoc S (2004) Electronic properties of carbon nanotoroidal structures. J Mol Struct Theochem 681:231–234

    Article  Google Scholar 

  • Zhang Z, Yuan J, Qiu M, Peng J, Xiao F (2006) Persistent currents in carbon nanotori: effects of structure deformations and chirality. J Appl Phys 99:104311

    Article  Google Scholar 

Download references

Acknowledgements

PS gratefully acknowledges the financial support from the Thailand Research Fund through the Royal Golden Jubilee PhD Program (Grant No. PHD/0075/2559), and DB is grateful for funding from the Thailand Research Fund (RSA6180076)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Duangkamon Baowan.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Derivation of energy expression between atom and torus

From (3) the integrand does not depend on \(\theta\), and the expression can be reduced to the form

$$\begin{aligned} I_n^\text {(pt)}&=2\pi r\int _{-\pi }^\pi \frac{R+r\cos \phi }{[r^2+R^2+\delta ^2+2r(R\cos \phi -\delta \sin \phi )]^n} \, \text {d}\phi \\&=2\pi r\int _{-\pi }^\pi \frac{R+r\cos \phi }{[a+b\sin (\phi -\phi _0)]^n} \, \text {d}\phi , \end{aligned}$$

where \(a=r^2+R^2+\delta ^2, b=-2r(R^2+\delta ^2)^{1/2}\) and \(\phi _0=\sin ^{-1}(R/(R^2+\delta ^2)^{1/2})\). Consequently, substituting \(\lambda =\phi -\phi _0\) gives

$$\begin{aligned} I_n^\text {(pt)}&=\frac{\pi Rr}{R^2+\delta ^2}\left[ (R^2+\delta ^2-r^2)\int _{\theta _0}^{\theta _0+2\pi }\frac{1}{(a+b\sin \lambda )^n}\,\text {d}\lambda \right. \nonumber \\&\quad \quad \left. +\int _{\theta _0}^{\theta _0+2\pi }\frac{1}{(a+b\sin \lambda )^{n-1}}\,\text {d}\lambda \right] , \end{aligned}$$
(A1)

where \(\theta _0\) is a certain angle in \((-\pi ,\pi ]\). Therefore, we primarily focus on integrals of the form

$$\begin{aligned} {\tilde{I}}_m^\text {(pt)}=\int _{\theta _0}^{\theta _0+2\pi }\frac{1}{(a+b\sin \lambda )^m}\,\text {d}\lambda =\int _{-\pi }^{\pi }\frac{1}{(a+b\cos \lambda )^m}\,\text {d}\lambda . \end{aligned}$$

Upon utilising the Legendre polynomials property, \(P_{-n}(x)=P_{n-1}(x)\), and the integral representation

$$\begin{aligned} P_n(x)=\frac{1}{\pi }\int _0^\pi [x+(x^2-1)^{1/2}\cos t]^n\,\text {d}t, \end{aligned}$$
(A2)

we obtain

$$\begin{aligned} {\tilde{I}}_m^\text {(pt)}=\frac{2\pi }{(R^2+\delta ^2-r^2)^m} P_{m-1}\left( \frac{R^2+\delta ^2+r^2}{R^2+\delta ^2-r^2}\right) . \end{aligned}$$

Finally, substituting the result back to (A1) gives

$$\begin{aligned} I_n^\text {(pt)}&=\frac{2\pi ^2Rr}{(R^2+\delta ^2)(R^2+\delta ^2-r^2)^{n-1}}\\&\quad \quad \times \left[ P_{n-1}\left( \frac{R^2+\delta ^2+r^2}{R^2+\delta ^2-r^2}\right) +P_{n-2}\left( \frac{R^2+\delta ^2+r^2}{R^2+\delta ^2-r^2}\right) \right] . \end{aligned}$$

Appendix B: Derivation of energy expression between two tori

Now, we consider (4) and by rearranging \(\epsilon\), we have

$$\begin{aligned} \epsilon ^2=S^2+s^2+\delta ^2+2s(S^2+\delta ^2)^{1/2}\sin (\omega +\omega _0), \end{aligned}$$

where \(\omega _0=\sin ^{-1}(S/(S^2+\delta ^2)^{1/2})\). After substituting the new distance \(\epsilon\) into (3), it is observed that the integrand does not depend on \(\psi\), so that the energy integral for two tori becomes

$$\begin{aligned} I_n^\text {(tt)}=4\pi ^3Rrs\left( {\tilde{I}}_{n-1}^\text {(tt)}+{\tilde{I}}_{n-2}^\text {(tt)}\right) , \end{aligned}$$
(B1)

where with \(\alpha =R^2+S^2+s^2+\delta ^2,\beta =\alpha -r^2,\gamma =\alpha +r^2,\kappa =2s(S^2+\delta ^2)^{1/2}\) and \({\tilde{I}}_m^\text {(tt)}\) for \(m=n-1\) and \(m = n-2\) are defined as

$$\begin{aligned} {\tilde{I}}_m^\text {(tt)}=\int _{-\pi }^\pi \frac{(S+s\cos \omega )P_m\left( \frac{\gamma +\kappa \sin (\omega +\omega _0)}{\beta +\kappa \sin (\omega +\omega _0)}\right) }{[\alpha +\kappa \sin (\omega +\omega _0)][\beta +\kappa \sin (\omega +\omega _0)]^{n-1}}\,\text {d}\omega . \end{aligned}$$

Making a substitution \(\mu =\omega +\omega _0\) and applying the angle addition formula for the cosine function provide

$$\begin{aligned} {\tilde{I}}_m^\text {(tt)}=\frac{S}{2(S^2+\delta ^2)}\left[ (S^2+r^2+\delta ^2-R^2-s^2){\hat{I}}_1^\text {(tt)}+{\hat{I}}_2^\text {(tt)}\right] , \end{aligned}$$
(B2)

where \({\hat{I}}_j^\text {(tt)}\) for \(j=1\) and 2 are defined as

$$\begin{aligned} {\hat{I}}_j^\text {(tt)}=\int _{\omega _0-\pi }^{\omega _0+\pi }\frac{P_m\left( \frac{\gamma +\kappa \sin \mu }{\beta +\kappa \sin \mu }\right) }{(\alpha +\kappa \sin \mu )(\beta +\kappa \sin \mu )^{n-j}}\,\text {d}\mu . \end{aligned}$$
(B3)

Upon converting the Legendre polynomial of the first kind into the series representation

$$\begin{aligned} P_n(x)=2^n\sum _{k=0}^n\left( {\begin{array}{c}n\\ k\end{array}}\right) \left( {\begin{array}{c}(n+k-1)/2\\ n\end{array}}\right) x^k, \end{aligned}$$

and using the fact that the integrand is integrated over \(2\pi\) and is an even function, the equation above may be rewritten as

$$\begin{aligned} {\hat{I}}_j^\text {(tt)}&=2^{m+1}\sum _{k=0}^m\left( {\begin{array}{c}m\\ k\end{array}}\right) \left( {\begin{array}{c}(m+k-1)/2\\ m\end{array}}\right) \nonumber \\ &\quad \times \int _0^\pi \frac{(\gamma +\kappa \cos \mu )^k}{(\alpha +\kappa \cos \mu )(\beta +\kappa \cos \mu )^{n+k-j}}\,\text {d}\mu . \end{aligned}$$

Adopting the trigonometric property, \(\cos \mu =1-2\sin ^2\mu /2\), and making a substitution \(t=\sin ^2\mu /2\) give

$$\begin{aligned} {\hat{I}}_j^\text {(tt)}&=2^{m+1}\sum _{k=0}^m\left( {\begin{array}{c}m\\ k\end{array}}\right) \left( {\begin{array}{c}(m+k-1)/2\\ m\end{array}}\right) \nonumber \\ &\quad\times \int _0^1\frac{(\gamma +\kappa -2\kappa t)^kt^{-1/2}(1-t)^{-1/2}}{(\alpha +\kappa -2\kappa t)(\beta +\kappa -2\kappa t)^{n+k-j}}\,\text {d}t. \end{aligned}$$

Subsequently, applying the binomial theorem to the term in the numerator and writing the result in terms of the Appell’s hypergeometric function using the integral representation

$$\begin{aligned} F_1(a;b,b';c;x,y)&=\frac{\varGamma (c)}{\varGamma (a)\varGamma (c-a)} \nonumber \\ &\quad \times \int _0^1t^{a-1}(1-t)^{c-a-1}(1-tx)^{-b}(1-ty)^{-b'}\,\text {d}t, \end{aligned}$$

the equation above becomes

$$\begin{aligned} {\hat{I}}_j^\text {(tt)}&=\sum _{k=0}^m\sum _{l=0}^k 2^{m+2}\left( {\begin{array}{c}m\\ k\end{array}}\right) \left( {\begin{array}{c}k\\ l\end{array}}\right) \nonumber \\ &\quad \times\left( {\begin{array}{c}(m+k-1)/2\\ m\end{array}}\right) \frac{(\gamma +\kappa )^{k-l}(-2\kappa )^l}{(\alpha +\kappa )(\beta +\kappa )^{n+k-j}} \frac{\varGamma (l+1/2)\varGamma (1/2)}{\varGamma (l+1)} \nonumber \\ &\quad \times F_1\left( l+1/2;1,n+k-j;l+1;\frac{2\kappa }{\alpha +\kappa },\frac{2\kappa }{\beta +\kappa }\right) . \end{aligned}$$

Next, we use the series form of the Appell’s function

$$\begin{aligned} F_1(a;b,b';c;x,y)=\sum _{m=0}^\infty \frac{(a)_m(b)_m}{m!(c)_m}F(a+m,b';c+m;y)x^m, \end{aligned}$$

and some properties of the Pochhammer symbol and gamma function, we may deduce

$$\begin{aligned} {\hat{I}}_j^\text {(tt)}&=\pi \sum _{k=0}^m\sum _{l=0}^k\sum _{p=0}^\infty 2^{m+l+1}\left( {\begin{array}{c}m\\ k\end{array}}\right) \left( {\begin{array}{c}k\\ l\end{array}}\right) \left( {\begin{array}{c}2l\\ l\end{array}}\right) \nonumber \\ &\quad \times \left( {\begin{array}{c}(m+k-1)/2\\ m\end{array}}\right) \frac{(\gamma +\kappa )^{k-l}(-\kappa )^l}{(\alpha +\kappa )(\beta +\kappa )^{n+k-j}} \frac{(l+1/2)_p}{(l+1)_p} \nonumber \\ &\quad\times F\left( l+p+1/2,n+k-j;l+p+1;\frac{2\kappa }{\beta +\kappa }\right) \left( \frac{2\kappa }{\alpha +\kappa }\right) ^p, \end{aligned}$$
(B4)

where F(abcx) is the ordinary hypergeometric function. Finally, substituting the result back into Eqs. (B2) and (B1), respectively, leads to the complete form of the energy expression for two tori interaction.

However, if we further assume that the major radius R is much larger than the minor radius r, the energy expression defined by (B3) can be rewritten as

$$\begin{aligned} {\hat{I}}_j^\text {(tt)}=2\int _0^\pi \frac{1}{(\alpha +\kappa \cos \mu )^{n-j+1}}\,\text {d}\mu . \end{aligned}$$

Similarly, applying the properties of the Legendre polynomials as given in (A2) brings

$$\begin{aligned} {\hat{I}}_j^\text {(tt)}=\frac{2\pi }{(\alpha ^2-\kappa ^2)^{(n-j+1)/2}}P_{n-j}\left( \frac{\alpha }{(\alpha ^2-\kappa ^2)^{1/2}}\right) . \end{aligned}$$
(B5)

Subsequently, following the same procedure as described previously by substituting it back into (B2) and (B1) to obtain the final expression for the interaction energy between two tori.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarapat, P., Baowan, D. & Hill, J.M. Optimal configurations for interacting carbon nanotori. Appl Nanosci 9, 225–232 (2019). https://doi.org/10.1007/s13204-018-0930-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13204-018-0930-6

Keywords

Navigation