Skip to main content
Log in

A novel approach of fluorescent porous graphite carbon nitride based silica gel powder for latent fingerprint detection

  • Original Article
  • Published:
Applied Nanoscience Aims and scope Submit manuscript

Abstract

Porous graphitic carbon nitride (pg-C3N4) was synthesized from bulk g-C3N4 (Bg-C3N4). First, bulk g-C3N4 was prepared by a thermal method with poly-condensation of melamine as a precursor. The pg-C3N4 was synthesized from Bg-C3N4 under ultrasonic treatment in a sulphuric acid medium. Thereafter, pg-C3N4 was combined with commercial silica gel (Slg) to give a fluorescent Slg/pg-C3N4 powder. These prepared materials were characterized by means of distinctive instrumental techniques consisting of UV–visible spectroscopy (UV–visible), fluorescence spectroscopy (FL), Fourier transform infrared spectroscopy (FT-IR) X-ray diffraction (XRD), Raman spectroscopy, Brunauer–Emmett–Teller (BET), scanning electron microscope (SEM), transmission electron microscopy (TEM) and live cell microscopy. The fluorescent Slg/pg-C3N4 powder was used as a labeling agent for the development of latent fingerprints (LFP) on different surfaces such as glass slides, aluminum foil, aluminum sheets, aluminum rods, a compact disc (CD), iron discs, coins, a tea cup and spoon. The LFP images were additionally captured through the use of ultraviolet radiation at 365 nm due to the fluorescent nature of the Slg/pg-C3N4 powder. The LFP images have been also investigated using different commercial powders such as ZnSO4, TiO2 and Iodine vapor for comparison with fluorescent Slg/pg-C3N4 powder. The Slg/pg-C3N4 powder was used to investigate the LFP images submerged in fresh water. Ultimately, the different fluorescent backgrounds of LFP images had been demonstrated using live cell microscopy with pg-C3N4 and Bg-C3N4. The fluorescent Slg/pg-C3N4 powder exhibited potential as a good labeling agent with excessive sensitivity, rapid detection and an eco-friendly nature. This fluorescent Slg/pg-C3N4 powder was also used to develop the LFP images under conditions that are likely to simulate real crime scenes to establish whether this material can be used in real forensic investigations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Scheme 4
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Algarra M, Jiménez-Jiménez J, Moreno-Tost R, Campos BB, Esteves da Silva JCG (2011) CdS nanocomposites assembled in porous phosphate heterostructures for fingerprint detection. Opt Mater 33(6):893–898

    Article  CAS  Google Scholar 

  • Bai XJ, Wang L, Zong RL, Zhu YF (2013) Photocatalytic activity enhanced via g-C3N4 nanoplates to nanorods. J Phys Chem C 117(19):9952–9961

    Article  CAS  Google Scholar 

  • Basavaraj RB, Nagabhushana H, Darshan GP, Daruka Prasad B, Rahul M, Sharma SC, Sudaramani R, Archana KV (2017) Red and green emitting CTAB assisted CdSiO3:Tb3+/Eu3+ nanopowders, as fluorescent labeling agents used in forensic and display applications. Dyes Pigm 147:364–377. https://doi.org/10.1016/j.dyepig.2017.08.011

    Article  CAS  Google Scholar 

  • Bennett TD, Cheetham AK, Fuchs AH, Coudert FX (2016) Interplay between defects, disorder and flexibility in metal-organic frameworks. Nat Chem 9(1):11–16

    Article  Google Scholar 

  • Bowman CN, Kloxin CJ (2012) covalent adaptable networks: reversible bond structures incorporated in polymer networks. Angew Chem Int Ed 51(18):4272–4274

    Article  CAS  Google Scholar 

  • Bu Y, Chen Z, Xie T, Li W, Ao J (2016) Fabrication of C3N4 ultrathin flakes by mechanical grind method with enhanced photocatalysis and photoelectrochemical performance. RSC Adv 6(53):47813–47819

    Article  CAS  Google Scholar 

  • Bumbrah GS (2017) Cyanoacrylate fuming method for detection of latent fingermarks: a review. Egypt J Forensic Sci 7(1):4. https://doi.org/10.1186/s41935-017-0009-7

    Article  Google Scholar 

  • Chen XF, Zhang JS, Fu XZ, Antonietti M, Wang XC (2009) Fe-g-C3N4-catalyzed oxidation of benzene to phenol using hydrogen peroxide and visible light. J Am Chem Soc 131(33):11658–11659

    Article  CAS  Google Scholar 

  • Chen H, Ma RL, Chen Y, Fan LJ (2017) Fluorescence development of latent fingerprint with conjugated polymer nanoparticles in aqueous colloidal solution. ACS Appl Mater Interfaces 9(5):4908–4915

    Article  CAS  Google Scholar 

  • Choi MJ, McDonagh AM, Maynard P, Roux C (2008) Metal-containing nanoparticles and nano-structured particles in finger mark detection. Forensic Sci Int 179(2–3):87–97

    Article  CAS  Google Scholar 

  • Choi BG, Yang M, Hong WH, Choi JW, Huh YS (2012) 3D macroporous graphene frameworks for supercapacitors with high energy and power densities. ACS Nano 6(5):4020–4028

    Article  CAS  Google Scholar 

  • Cui YJ, Zhang JS, Zhang GG, Huang JH, Liu P, Antonietti M, Wang XC (2011) Synthesis of bulk and nanoporous carbon nitride polymers from ammonium thiocyanate for photocatalytic hydrogen evolution. J Mater Chem 21(34):13032–13039

    Article  CAS  Google Scholar 

  • Dong GH, Ho WK, Li YH, Zhang LZ (2015) Facile synthesis of porous graphene-like carbon nitride (C6N9H3) with excellent photocatalytic activity for NO removal. Appl Catal B Environ 174–175:477–485. https://doi.org/10.1016/j.apcatb.2015.03.035

    Article  CAS  Google Scholar 

  • Du XR, Zou GJ, Wang ZH, Wang XL (2015) A scalable chemical route to soluble acidified graphitic carbon nitride: an ideal precursor for isolated ultrathin g-C3N4 nanosheets. Nanoscale 7(19):8701–8706

    Article  CAS  Google Scholar 

  • Du Y, Huang Z, Wu S, Xiong K, Zhang X, Zheng B, Nadimicherla R, Fu R, Wu D (2018) Preparation of versatile yolk-shell nanoparticles with a precious metal yolk and a microporous polymer shell for high-performance catalysts and antibacterial agents. Polymer 137:195–200. https://doi.org/10.1016/j.polymer.2017.12.069

    Article  CAS  Google Scholar 

  • El-Kaderi HM, Hunt JR, Mendoza-Cortes JL, Cote AP, Taylor RE, Keeffe MO, Yaghi OM (2007) Designed synthesis of 3D covalent organic frameworks. Science 316(5822):268–272

    Article  CAS  Google Scholar 

  • Fan XQ, Zhang LX, Cheng RL, Wang M, Li ML, Zhou YJ, Shi JL (2015) Construction of graphitic C3N4-based intramolecular donor-acceptor conjugated copolymers for photocatalytic hydrogen evolution. ACS Catal 5(9):5008–5015

    Article  CAS  Google Scholar 

  • Feng X, Ding X, Jiang D (2012) Covalent organic frameworks. Chem Soc Rev 41(18):6010–6022

    Article  CAS  Google Scholar 

  • Fernandes D, Krysmann MJ, Kelarakis A (2015) Carbon dot based nanopowders and their application for fingerprint recovery. Chem Commun 51(23):4902–4905

    Article  CAS  Google Scholar 

  • Fernandes D, Krysmann MJ, Kelarakis A (2016) Carbogenically coated silica nanoparticles and their forensic applications. Chem Commun 52(53):8294–8296

    Article  CAS  Google Scholar 

  • Fu J, Chang B, Tian Y, Xi F, Dong X (2013) Novel C3N4-CdS composite photocatalysts with organic–inorganic heterojunctions: in situ synthesis, exceptional activity, high stability and photocatalytic mechanism. Mater Chem A 1(9):3083–3090

    Article  CAS  Google Scholar 

  • Ge L, Zuo F, Liu J, Ma Q, Wang C, Sun D, Bartels L, Feng P (2012) Synthesis and efficient visible light photocatalytic hydrogen evolution of polymeric g-C3N4 coupled with CdS quantum dots. J Phys Chem C 116(25):13708–13714

    Article  CAS  Google Scholar 

  • Han Q, Wang B, Gao J, Cheng ZH, Zhao Y, Zhang ZP, Qu LT (2016) Atomically thin mesoporous nanomesh of graphitic C3N4 for high-efficiency photocatalytic hydrogen evolution. ACS Nano 10(2):2745–2751

    Article  CAS  Google Scholar 

  • Hauser FM, Knupp G, Officer S (2015) Improvement in fingerprint detection using Tb (III)-dipicolinic acid complex doped nanobeads and time resolved imaging. Forensic Sci Int 253:55–63. https://doi.org/10.1016/j.forsciint.2015.05.010

    Article  CAS  Google Scholar 

  • He Y, Xu L, Zhu Y, Wei Q, Zhang M, Su B (2014) Immunological multimetal deposition for rapid visualization of sweat fingerprints. Angew Chem Ed 53(46):12609–12612

    CAS  Google Scholar 

  • Jeong HM, Lee JW, Shin WH, Choi YJ, Shin HJ, Kang JK, Choi JW (2011) Nitrogen-doped graphene for high-performance ultracapacitors and the importance of nitrogen-doped sites at basal planes. Nano Lett 11(6):2472–2477

    Article  CAS  Google Scholar 

  • Jiang J, Ou-yang L, Zhu L, Zheng A, Zou J, Yi X, Tang H (2014) Dependence of electronic structure of g-C3N4 on the layer number of its nanosheets: a study by Raman spectroscopy coupled with first-principles calculations. Carbon 80:213–221. https://doi.org/10.1016/j.carbon.2014.08.059

    Article  CAS  Google Scholar 

  • Jin X, Balasubramanian VV, Selvan ST, Sawant DP, Chari MA, Lu GQ, Vinu A (2009) Highly ordered mesoporous carbon nitride nanoparticles with high nitrogen content: a metal-free basic catalyst. Angew Chem Int Ed 48(42):7884–7887

    Article  CAS  Google Scholar 

  • Jun YS, Lee EZ, Wang XC, Hong WH, Stucky GD, Thomas A (2013) From melamine cyanuric acid supramolecular aggregates to carbon nitride hollow spheres. Adv Funct Mater 23(29):3661–3667

    Article  CAS  Google Scholar 

  • Jürgens B, Irran E, Senker J, Kroll P, Müller H, Schnick W (2003) Melem (2,5,8-Triamino-tri-s-triazine), an important intermediate during condensation of melamine rings to graphitic carbon nitride: synthesis, structure determination by X-ray powder diffractometry, solid-state NMR, and theoretical studies. J Am Chem Soc 125(34):10288–10300

    Article  CAS  Google Scholar 

  • Kang Y, Yang Y, Yin LC, Kang X, Wang L, Liu G, Cheng HM (2016) Selective breaking of hydrogen bonds of layered carbon nitride for visible light photocatalysis. Adv Mater 28(30):6471–6477

    Article  CAS  Google Scholar 

  • Leng K, Mai W, Zhang X, Liu R, Lin X, Huang J, Lou H, Xie Y, Fu R, Wu D (2018) Construction of functional nanonetwork-structured carbon nitride with Au nanoparticle yolks for highly efficient photocatalytic applications. Chem Commun 54(52):7159–7162

    Article  CAS  Google Scholar 

  • Li Z, Wu D, Liang Y, Fu R, Matyjaszewski K (2014) Synthesis of well-defined microporous carbons by molecular-scale templating with polyhedral oligomeric silsesquioxane moieties. J Am Chem Soc 136(13):4805–4808

    Article  CAS  Google Scholar 

  • Li HJ, Sun BW, Sui L, Qian DJ, Chen M (2015) Preparation of water-dispersible porous g-C3N4 with improved photocatalytic activity by chemical oxidation. Phys Chem Chem Phys 17(5):3309–3315

    Article  CAS  Google Scholar 

  • Li BY, Zhang XL, Zhang LY, Wang TT, Li L, Wang CG, Su ZM (2016a) NIR-responsive NaYF4: Yb, Er, Gd fluorescent upconversion nanorods for the highly sensitive detection of blood fingerprints. Dyes Pigm 34:178–185. https://doi.org/10.1016/j.dyepig.2016.07.014

    Article  CAS  Google Scholar 

  • Li H, Guo X, Liu J, Li F (2016b) A synthesis of fluorescent starch based on carbon nanoparticles for fingerprints detection. Opt Mater 60:404–410. https://doi.org/10.1016/j.optmat.2016.08.010

    Article  CAS  Google Scholar 

  • Li F, Li H, Cui T (2017) One-step synthesis of solid state luminescent carbon-based silica nanohybrids for imaging of latent fingerprints. Opt Mater 73:459–465. https://doi.org/10.1016/j.optmat.2017.09.004

    Article  CAS  Google Scholar 

  • Liang C, Li Z, Dai S (2008) Mesoporous carbon materials: synthesis and modification. Angew Chem Int Ed 47(20):3696–3717

    Article  CAS  Google Scholar 

  • Liang Q, Li Z, Huang ZH, Kang F, Yang QH (2015) Holey graphitic carbon nitride nanosheets with carbon vacancies for highly improved photocatalytic hydrogen production. Adv Funct Mater 25(25):6885–6892

    Article  CAS  Google Scholar 

  • Liang Y, Chen L, Zhuang D, Liu H, Fu R, Zhang M, Wu D, Matyjaszewski K (2017) Fabrication and nanostructure control of super-hierarchical carbon materials from heterogeneous bottlebrushes. Chem Sci 8(3):2101–2106

    Article  CAS  Google Scholar 

  • Liao G, Chen S, Quan X, Yu H, Zhao H (2012) Graphene oxide modified g-C3N4 hybrid with enhanced photocatalytic capability under visible light irradiation. J Mater Chem 22(6):2721–2726

    Article  CAS  Google Scholar 

  • Lin X, Liang Y, Lu Z, Lou H, Zhang X, Liu S, Zheng B, Liu R, Fu R, Wu D (2017) Mechanochemistry: a green, activation-free and top-down strategy to high-surface-area carbon materials. ACS Sustain Chem Eng 5(10):8535–8540

    Article  CAS  Google Scholar 

  • Liu Y, Yan K, Zhang J (2016a) Graphitic carbon nitride sensitized with CdS quantum dots for visible-light-driven photoelectrochemical aptasensing of tetracycline. ACS Appl Mater Interfaces 8(42):28255–28264

    Article  CAS  Google Scholar 

  • Liu Y, Zhang X, Wang J, Yang P (2016b) Preparation of luminescent graphitic C3N4 NS and their composites with RGO for property controlling. RSC Adv 6(113):112581–112588

    Article  CAS  Google Scholar 

  • Lotsch BV, Döblinger M, Sehnert J, Seyfarth L, Senker J, Oeckler O, Schnick W (2007) Unmasking melon by a complementary approach employing electron diffraction, solid-state NMR spectroscopy, and theoretical calculations-structural characterization of a carbon nitride polymer. Chem Eur J 13(17):4969–4980

    Article  CAS  Google Scholar 

  • Ma TY, Tang Y, Dai S, Qiao SZ (2014) Proton-functionalized two-dimensional graphitic carbon nitride nanosheet: an excellent metal-/label-free biosensing platform. Small 10(12):2382–2389

    Article  CAS  Google Scholar 

  • Mai W, Zuo Y, Li C, Wu J, Leng K, Zhang X, Liu R, Fu R, Wu D (2017) Functional nanonetwork-structured polymers with inbuilt poly(acrylic acid) linings for enhanced adsorption. Polym Chem 8(33):4771–4775

    Article  CAS  Google Scholar 

  • Mamba G, Mishra AK (2016) Graphitic carbon nitride (g-C3N4) nanocomposites: a new and exciting generation of visible light driven photocatalysts for environmental pollution remediation. Appl Catal B Environ 198:347–377. https://doi.org/10.1016/j.apcatb.2016.05.052

    Article  CAS  Google Scholar 

  • Martha S, Nashim A, Parida KM (2013) Facile synthesis of highly active g-C3N4 for efficient hydrogen production under visible light. J Mater Chem A 1(26):7816–7824

    Article  CAS  Google Scholar 

  • Mazur M, Wheatley PS, Navarro M, Roth WJ, Polozij M, Mayoral A, Eliasova P, Nachtigall P, Cejka J, Morris RE (2016) Synthesis of ‘unfeasible’ zeolites. Nat Chem 8(1):58–62

    Article  CAS  Google Scholar 

  • McMillan PF, Lees V, Quirico E, Montagnac G, Sella A, Reynard B, Simon P, Bailey E, Deifallah M, Corà F (2009) Graphitic carbon nitride C6N9H3.HCl: Characterisation by UV and near-IR FT Raman spectroscopy. J Solid State Chem 182(10):2670–2677

    Article  CAS  Google Scholar 

  • Miller DR, Wang J, Gillan EG (2002) Rapid, facile synthesis of nitrogen-rich carbon nitride powders. J Mater Chem 12(8):2463–2469

    Article  CAS  Google Scholar 

  • Niu P, Zhang LL, Liu G, Cheng HM (2012) Graphene-like carbon nitride nanosheets for improved photocatalytic activities. Adv Funct Mater 22(22):4763–4770

    Article  CAS  Google Scholar 

  • Niu P, Liu B, Li Y, Wang Q, Dong A, Hou H, Zhang L, Gao Y, Zhang J (2015) CdTe@SiO2/Ag nanocomposites as antibacterial fluorescent markers for enhanced latent fingerprint detection. Dyes Pigments 119:1–11. https://doi.org/10.1016/j.dyepig.2015.03.018

    Article  CAS  Google Scholar 

  • Phungyimnoi N, Eksinitkun G, Phutdhawong W (2017) Vacuum vaporization technique for latent fingerprints development on thermal papers using laws one natural products. J Phys Conf Ser 901(1):012159. https://doi.org/10.1088/1742-6596/901/1/012159

    Article  Google Scholar 

  • Rong M, Song X, Zhao T, Yao Q, Wang Y, Chen X (2015) Synthesis of highly fluorescent P,O-g-C3N4 nanodots for the label-free detection of Cu2+ and acetylcholinesterase activity. J Mater Chem C 3(41):10916–10924

    Article  CAS  Google Scholar 

  • Ryu SJ, Jung H, Lee JK (2015) Latent fingerprint detection using semiconductor quantum dots as a fluorescent inorganic nanomaterial for forensic application. Bull Korean Chem Soc 36(10):2561–2564

    Article  CAS  Google Scholar 

  • Saif M, Shebl M, Nabeel AI, Shokry R, Hafez H, Mbarek A, Damak K, Maalej R, Abdel-Mottaleb MSA (2015) Luminescent sensor based on Eu3þ:Y2Ti2O7/SiO2 nano-powder for latent fingerprint detection. Sens Actuators B 220:162–170. https://doi.org/10.1016/j.snb.2015.05.040

    Article  CAS  Google Scholar 

  • Shcherbatyuk GV, Inman RH, Wang C, Winston R, Ghosh S (2010) Viability of using near infrared PbS quantum dots as active materials in luminescent solar concentrators. Appl Phys Lett 96:191901. https://doi.org/10.1063/1.3422485

    Article  CAS  Google Scholar 

  • She X, Xu H, Xu Y, Yan J, Xia J, Xu L, Song Y, Jiang Y, Zhang Q, Li H (2014) Exfoliated graphene-like carbon nitride in organic solvents: enhanced photocatalytic activity and highly selective and sensitive sensor for the detection of trace amounts of Cu2+. J Mater Chem A 2(8):2563–2570

    Article  CAS  Google Scholar 

  • Sheng ZH, Shao L, Chen JJ, Bao WJ, Wang FB, Xia X-H XH (2011) Catalyst-free synthesis of nitrogen-doped graphene via thermal annealing graphite oxide with melamine and its excellent electrocatalysis. ACS Nano 5(6):4350–4358

    Article  CAS  Google Scholar 

  • Shi Q, Zhang R, Lv Y, Deng Y, Elzatahrya AA, Zhao D (2015) Nitrogen-doped ordered mesoporous carbons based on cyanamide as the dopant for supercapacitor. Carbon 84:335–346. https://doi.org/10.1016/j.carbon.2014.12.013

    Article  CAS  Google Scholar 

  • Shiraishi Y, Kofuji Y, Kanazawa S, Sakamoto H, Ichikawa S, Tanaka S, Hirai T (2014) Platinum nanoparticles strongly associated with graphitic carbon nitride as efficient cocatalysts for photocatalytic hydrogen evolution under visible light. Chem Commun 50(96):15255–15258

    Article  CAS  Google Scholar 

  • Sodhi GS, Kaur J (2001) Powder method for detecting latent fingerprints: a review. Forensic Sci Int 120(3):172–176

    Article  CAS  Google Scholar 

  • Song Z, Li Z, Lin L, Zhang Y, Lin T, Chen L, Cai Z, Lin S, Guo L, Fua F, Wang X (2017) Phenyl-doped graphitic carbon nitride: photoluminescence mechanism and latent fingerprint imaging. Nanoscale 9(45):17737–17742

    Article  CAS  Google Scholar 

  • Su Q, Lu Y, Liu S, Zhang X, Lin Y, Fu R, Wu D (2018) Nanonetwork-structured yolk-shell FeS2@C as high-performance cathode materials for Li-ion batteries. Carbon 140:433–440. https://doi.org/10.1016/j.carbon.2018.08.049

    Article  CAS  Google Scholar 

  • Tahir M, Cao CB, Mahmood N, Butt FK, Mahmood A, Idrees F, Hussain S, Tanveer M, Ali Z, Aslam I (2014) Multifunctional g-C3N4 nanofibers: a template-free fabrication and enhanced optical, electrochemical, and photocatalyst properties. ACS Appl Mater Interfaces 6(2):1258–1265

    Article  CAS  Google Scholar 

  • Thomas A, Fischer A, Goettmann F, Antonietti M, Müller JO, Schlögl R, Carlsson JM (2008) Graphitic carbon nitride materials: variation of structure and morphology and their use as metal-free catalysts. J Mater Chem 18(41):4893–4908

    Article  CAS  Google Scholar 

  • Tong J, Zhang L, Li F, Li M, Cao S (2015) An efficient top-down approach for the fabrication of large-aspect-ratio g-C3N4 nanosheets with enhanced photocatalytic activities. Phys Chem Chem Phys 17(36):23532–23537

    Article  CAS  Google Scholar 

  • Wang X, Maeda K, Thomas A, Takanabe K, Xin G, Carlsson JM, Domen K, Antonietti M (2009) A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat Mater 8(1):76–80

    Article  CAS  Google Scholar 

  • Wang M, Li M, Yu A, Wu J, Mao C (2015a) Rare earth fluorescent nanomaterials for enhanced development of latent fingerprints. ACS Appl Mater Interfaces 7(51):28110–28115

    Article  CAS  Google Scholar 

  • Wang M, Zhu Y, Mao C (2015b) Synthesis of NIR-Responsive NaYF4:Yb,Er upconversion fluorescent nanoparticles using an optimized solvothermal method and their applications in enhanced development of latent fingerprints on various smooth substrates. Langmuir 31(25):7084–7090

    Article  CAS  Google Scholar 

  • Wang A, Lee C, Bian H, Li Z, Zhan Y, He J, Wang Y, Lu J, Li YY (2016) Synthesis of g-C3N4/silica gels for white-light-emitting devices, part. Part Syst Charact 34 (1): https://doi.org/10.1002/ppsc.201600258

  • Wu D, Xu F, Sun B, Fu R, He H, Matyjaszewski K (2012) Design and Preparation of Porous Polymers. Chem Rev 112(7):3959–4015

    Article  CAS  Google Scholar 

  • Xia PF, Zhu BC, Yu JG, Cao SW, Jaroniec M (2017) Ultra-thin nanosheet assemblies of graphitic carbon nitride for enhanced photocatalytic CO2 reduction. J Mater Chem A 5(7):3230–3238

    Article  CAS  Google Scholar 

  • Xiang MH, Liu JW, Li N, Tang H, Yu RQ, Jiang JH (2016) A fluorescent graphitic carbon nitride nanosheet biosensor for highly sensitive, label-free detection of alkaline phosphatase. Nanoscale 8(8):4727–4732

    Article  CAS  Google Scholar 

  • Xu J, Zhang L, Shi R, Zhu Y (2013) Chemical exfoliation of graphitic carbon nitride for efficient heterogeneous photocatalysis. J Mater Chem A 1(46):14766–14772

    Article  CAS  Google Scholar 

  • Xu J, Brenner TJK, Chabanne L, Neher D, Antonietti M, Shalom M (2014a) Liquid-based growth of polymeric carbon nitride layers and their use in a mesostructured polymer solar cell with V oc exceeding 1 V. J Am Chem Soc 136(39):13486–13489

    Article  CAS  Google Scholar 

  • Xu M, He G, Li Z, He F, Gao F, Su Y, Zhang L, Yang Z, Zhang Y (2014b) A green heterogeneous synthesis of N-doped carbon dots and their photoluminescence applications in solid and aqueous states. Nanoscale 6(17):10307–10315

    Article  CAS  Google Scholar 

  • Xu F, Tang Z, Huang S, Chen L, Liang Y, Mai W, Zhong H, Fu R, Wu D (2015) Facile synthesis of ultrahigh-surface-area hollow carbon nanospheres for enhanced adsorption and energy storage. Nat Commun 6:7221. https://doi.org/10.1038/ncomms8221

    Article  Google Scholar 

  • Yang P, Zhao J, Wang J, Cao B, Li L, Zhu Z (2014) Light-induced synthesis of photoluminescent carbon nanoparticles for Fe3+ sensing and photocatalytic hydrogen evolution. J Mater Chem A 3(1):136–138

    Article  CAS  Google Scholar 

  • Yu J, Wang K, Xiao W, Cheng B (2014) Photocatalytic reduction of CO2 into hydrocarbon solar fuels over g-C3N4–Pt nanocomposite photocatalysts. Phys Chem Chem Phys 16(23):11492–11501

    Article  CAS  Google Scholar 

  • Yuan X, Zhou C, Jin Y, Jing Q, Yang Y, Xu S, Qi T, Mu Y, Du AK (2016) Facile synthesis of 3D porous thermally exfoliated g-C3N4 nanosheet with enhanced photocatalytic degradation of organic dye. J Colloid Interface Sci 468:211–219. https://doi.org/10.1016/j.jcis.2016.01.048

    Article  CAS  Google Scholar 

  • Zhang J, Chen X, Takanabe K, Maeda K, Domen K, Epping JD, Fu X, Antonietti M, Wang X (2010) Synthesis of a carbon nitride structure for visible-light catalysis by copolymerization. Angew Chem Int Ed 49(2):441–444

    Article  CAS  Google Scholar 

  • Zhang Y, Pan Q, Chai G, Liang M, Dong G, Zhang Q, Qiu J (2013a) Synthesis and luminescence mechanism of multicolor-emitting g-C3N4 nanopowders by low temperature thermal condensation of melamine, Sci Rep 3:1943. https://doi.org/10.1038/srep01943

    Article  Google Scholar 

  • Zhang X, Xie X, Wang H, Zhang J, Pan B, Xie Y (2013b) Enhanced Photoresponsive ultrathin graphitic-phase C3N4 nanosheets for bioimaging. J Am Chem Soc 135(1):18–21

    Article  CAS  Google Scholar 

  • Zhang X, Wang H, Wang H, Zhang Q, Xie J, Tian Y, Wang J, Xie Y (2014a) Single-layered graphitic-C3N4 quantum dots for two-photon fluorescence imaging of cellular nucleus. Adv Mater 26(26):4438–4443

    Article  CAS  Google Scholar 

  • Zhang S, Li J, Zeng M, Xu J, Wang X, Hu W (2014b) Polymer nanodots of graphitic carbon nitride as effective fluorescent probes for the detection of Fe3+ and Cu2+ ions. Nanoscale 6(8):4157–4162

    Article  CAS  Google Scholar 

  • Zhang HQ, Huang YH, Hu SR, Huang QT, Wei C, Zhang WX, Kang LP, Huang ZY, Hao AY (2015) Fluorescent probes for “off–on” sensitive and selective detection of mercury ions and l-cysteine based on graphitic carbon nitride nanosheets. J Mater Chem C 3(9):2093–2100

    Article  CAS  Google Scholar 

  • Zhao YC, Liu Z, Chu WG, Song L, Zhang ZX, Yu DL, Tian YJ, Xie SS, Sun LF (2008) Large-scale synthesis of nitrogen-rich carbon nitride microfibers using graphitic carbon nitride as precursor. Adv Mater 20(9):1777–1781

    Article  CAS  Google Scholar 

  • Zhao L, Fan LZ, Zhou MQ, Guan H, Qiao S, Antonietti M, Titirici MM (2010) Nitrogen-containing hydrothermal carbons with superior performance in supercapacitors. Adv Mater 22(45):5202–5206

    Article  CAS  Google Scholar 

  • Zhao H, Dong Y, Jiang P, Miao H, Wang G, Zhang J (2015) In situ light-assisted preparation of MoS2 on graphitic C3N4 nanosheets for enhanced photocatalytic H2 production from water. J Mater Chem A 3(14):7375–7381

    Article  CAS  Google Scholar 

  • Zhou M, Pu F, Wang Z, Guan S (2014) Nitrogen-doped porous carbons through KOH activation with superior performance in supercapacitors. Carbon 68:185–194. https://doi.org/10.1016/j.carbon.2013.10.079

    Article  CAS  Google Scholar 

  • Zhou X, Zhang G, Shao C, Li X, Jiang X, Liu Y (2017) Fabrication of g-C3N4/SiO2-Au composite nanofibers with enhanced visible photocatalytic activity. Ceram Int 43(17):15699–15707

    Article  CAS  Google Scholar 

  • Zhu S, Meng Q, Wang L, Zhang J, Song Y, Jin H, Zhang K, Sun H, Wang H, Yang B (2013) Highly photoluminescent carbon dots for multicolor patterning, sensors, and bioimaging. Angew Chem Int Ed 52(14):3953–3957

    Article  CAS  Google Scholar 

  • Zhu YP, Ren TZ, Yuan ZY (2015) Mesoporous phosphorus-doped g-C3N4 nanostructured flowers with superior photocatalytic hydrogen evolution performance. ACS Appl Mater Interfaces 7(30):16850–16856

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was financially supported by PDRFs, University of Johannesburg and Faculty of Science, University of Johannesburg, South Africa. This research is also supported through Center for Nanoforensic and Water Research, University of Johannesburg, South Africa.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Pillay.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 5217 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prabakaran, E., Pillay, K. A novel approach of fluorescent porous graphite carbon nitride based silica gel powder for latent fingerprint detection. Appl Nanosci 9, 255–277 (2019). https://doi.org/10.1007/s13204-018-0904-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13204-018-0904-8

Keywords

Navigation