Skip to main content
Log in

High-temperature annealing effects on molybdenum–silicon contact substrate for vertically structured silicon quantum-dot solar cells

  • Original Article
  • Published:
Applied Nanoscience Aims and scope Submit manuscript

Abstract

This paper studies the applicability of sputtered Molybdenum (Mo) thin films on silicon wafers (Mo–Si) to act as contact substrates for vertically structured Si quantum-dot (QD) solar cells. The compatibility of Mo–Si contact substrate with Si QD material under different annealing temperatures is examined. Cross sections of annealed samples show well-defined interfaces without metal penetration into the Si QD bilayer regions. Through comparing samples deposited on Mo–Si substrates with those on fused-silica substrates, we identified from Raman spectra that the presence of Mo is advantageous for the Si-crystallization process and in fact provide beneficial passivation effects on the Si QD material according to changes in photoluminescence intensity. This allows us to conclude that Mo thin films are compatible with the sputter–anneal process, and verify the feasibility of using the proposed Mo–Si contact scheme for future fabrication of Si QD solar cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Becker C, Ruske F, Sontheimer T, Gorka B, Bloeck U, Gall S, Rech B (2009) Microstructure and photovoltaic performance of polycrystalline silicon thin films on temperature-stable ZnO:Al layers. J Appl Phys 106(8):084506. https://doi.org/10.1063/1.3240343

    Article  Google Scholar 

  • Chelvanathan P, Zakaria Z, Yusoff Y, Akhtaruzzaman M, Alam MM, Alghoul MA, Sopian K, Amin N (2015) Annealing effect in structural and electrical properties of sputtered Mo thin film. Appl Surf Sci 334(0):129–137. https://doi.org/10.1016/j.apsusc.2014.08.154

    Article  Google Scholar 

  • Cheylan S, Elliman RG (2001) Effect of hydrogen on the photoluminescence of Si nanocrystals embedded in a SiO2 matrix. Appl Phys Lett 78(9):1225–1227. https://doi.org/10.1063/1.1338492

    Article  Google Scholar 

  • Conibeer G (2007) Third-generation photovoltaics. Mater Today 10(11):42–50. https://doi.org/10.1016/s1369-7021(07)70278-x

    Article  Google Scholar 

  • Conibeer G, Green MA, König D, Perez-Wurfl I, Huang S, Hao X, Di D, Shi L, Shrestha S, Puthen-Veetil B, So Y, Zhang B, Wan Z (2011) Silicon quantum dot based solar cells: addressing the issues of doping, voltage and current transport. Prog Photovoltaics Res Appl 19(7):813–824. https://doi.org/10.1002/pip.1045

    Article  Google Scholar 

  • Di D, Perez-Wurfl I, Gentle A, Kim D-H, Hao X, Shi L, Conibeer G, Green MA (2010) Impacts of post-metallisation processes on the electrical and photovoltaic properties of Si quantum dot solar cells. Nanoscale Res Lett 5(11):1762–1767. https://doi.org/10.1007/s11671-010-9707-x

    Article  Google Scholar 

  • Doğan İ, van de Sanden MCM (2013) Direct characterization of nanocrystal size distribution using Raman spectroscopy. J Appl Phys 114(13):134310. https://doi.org/10.1063/1.4824178

    Article  Google Scholar 

  • Faraci G, Gibilisco S, Russo P, Pennisi AR, La Rosa S (2006) Modified Raman confinement model for Si nanocrystals. Phys Rev B 73(3):033307

    Article  Google Scholar 

  • Gordillo G, Grizález M, Hernandez LC (1998) Structural and electrical properties of DC sputtered molybdenum films. Sol Energy Mater Sol Cells 51(3–4):327–337. https://doi.org/10.1016/S0927-0248(97)00236-5

    Article  Google Scholar 

  • Guillén C, Herrero J (2003) Low-resistivity Mo thin films prepared by evaporation onto 30 cm × 30 cm glass substrates. J Mater Process Technol 143–144(0):144–147. https://doi.org/10.1016/S0924-0136(03)00395-9

    Article  Google Scholar 

  • Hernández S, López-Vidrier J, López-Conesa L, Hiller D, Gutsch S, Ibáñez J, Estradé S, Peiró F, Zacharias M, Garrido B (2014) Determining the crystalline degree of silicon nanoclusters/SiO2 multilayers by Raman scattering. J Appl Phys 115(20):203504. https://doi.org/10.1063/1.4878175

    Article  Google Scholar 

  • Hiller D, Goetze S, Zacharias M (2011) Rapid thermal annealing of size-controlled Si nanocrystals: dependence of interface defect density on thermal budget. J Appl Phys 109(5):054308. https://doi.org/10.1063/1.3556449

    Article  Google Scholar 

  • Houben L, Luysberg M, Hapke P, Carius R, Finger F, Wagner H (1998) Structural properties of microcrystalline silicon in the transition from highly crystalline to amorphous growth. Philos Mag A 77(6):1447–1460. https://doi.org/10.1080/01418619808214262

    Article  Google Scholar 

  • Ivanda M, Hohl A, Montagna M, Mariotto G, Ferrari M, Crnjak Orel Z, Turković A, Furić K (2006) Raman scattering of acoustical modes of silicon nanoparticles embedded in silica matrix. J Raman Spectrosc 37(1–3):161–165

    Article  Google Scholar 

  • Jia X, Zhang P, Lin Z, Anthony R, Kortshagen U, Huang S, Puthen-Veettil B, Conibeer G, Perez-Wurfl I (2015) Accurate determination of the size distribution of Si nanocrystals from PL spectra. RSC Adv 5(68):55119–55125. https://doi.org/10.1039/C5RA02805A

    Article  Google Scholar 

  • Jia X, Lin Z, Zhang T, Puthen-Veettil B, Yang T, Nomoto K, Ding J, Conibeer G, Perez-Wurfl I (2017) Accurate analysis of the size distribution and crystallinity of boron doped Si nanocrystals via Raman and PL spectra. RSC Adv 7(54):34244–34250. https://doi.org/10.1039/C7RA04472K

    Article  Google Scholar 

  • Kaneko T, Wakagi M, Onisawa KI, Minemura T (1994) Change in crystalline morphologies of polycrystalline silicon films prepared by radio-frequency plasma-enhanced chemical vapor deposition using SiF4 + H2 gas mixture at 350 °C. Appl Phys Lett 64(14):1865–1867. https://doi.org/10.1063/1.111781

    Article  Google Scholar 

  • Lee DN (2000) Strain energy release maximization model for evolution of recrystallization textures. Int J Mech Sci 42(8):1645–1678. https://doi.org/10.1016/S0020-7403(99)00095-8

    Article  Google Scholar 

  • Lin Z, Perez-Wurfl I, Wu L, Jia X, Zhang T, Puthen-Veettil B, Zhang H, Di D, Conibeer G (2013) Investigation in feasibility of Molybdenum as a back contact layer for Silicon based quantum dot solar cells. In: Proc. SPIE 8620, Physics, Simulation, and Photonic Engineering of Photovoltaic Devices II, San Francisco, United States, pp 86201W-86201W-86207. https://doi.org/10.1117/12.2003504

  • Lin Z, Wu L, Jia X, Zhang T, Puthen-Veettil B, Yang TC-J, Conibeer G, Perez-Wurfl I (2015) Boron doped Si rich oxide/SiO2 and silicon rich nitride/SiNx bilayers on molybdenum-fused silica substrates for vertically structured Si quantum dot solar cells. J Appl Phys 118(4):045303. https://doi.org/10.1063/1.4927514

    Article  Google Scholar 

  • Miura S, Nakamura T, Fujii M, Inui M, Hayashi S (2006) Size dependence of photoluminescence quantum efficiency of Si nanocrystals. Phys Rev B 73(24):245333

    Article  Google Scholar 

  • Perez-Wurfl I, Hao X, Gentle A, Kim D-H, Conibeer G, Green MA (2009) Si nanocrystal p-i-n diodes fabricated on quartz substrates for third generation solar cell applications. Appl Phys Lett 95(15):153506. https://doi.org/10.1063/1.3240882

    Article  Google Scholar 

  • Repins I, Contreras MA, Egaas B, DeHart C, Scharf J, Perkins CL, To B, Noufi R (2008) 19·9%-efficient ZnO/CdS/CuInGaSe2 solar cell with 81·2% fill factor. Prog Photovoltaics Res Appl 16(3):235–239. https://doi.org/10.1002/pip.822

    Article  Google Scholar 

  • Scofield JH, Duda A, Albin D, Ballard BL, Predecki PK (1995) Sputtered molybdenum bilayer back contact for copper indium diselenide-based polycrystalline thin-film solar cells. Thin Solid Films 260(1):26–31. https://doi.org/10.1016/0040-6090(94)06462-8

    Article  Google Scholar 

  • Scragg JJ, Ericson T, Fontané X, Izquierdo-Roca V, Pérez-Rodríguez A, Kubart T, Edoff M, Platzer-Björkman C (2014) Rapid annealing of reactively sputtered precursors for Cu2ZnSnS4 solar cells. Prog Photovoltaics Res Appl 22(1):10–17. https://doi.org/10.1002/pip.2265

    Article  Google Scholar 

  • Terry Chien-Jen Y, Keita N, Binesh P-V, Ziyun L, Lingfeng W, Tian Z, Xuguang J, Gavin C, Ivan P-W (2017) Properties of silicon nanocrystals with boron and phosphorus doping fabricated via silicon rich oxide and silicon dioxide bilayers. Mater Res Express 4(7):075004

    Article  Google Scholar 

  • Tong J, Luo H-L, Xu Z-A, Zeng H, Xiao X-D, Yang C-L (2013) The effect of thermal annealing of Mo film on the CuInSe2 layer texture and device performance. Sol Energy Mater Sol Cells 119(0):190–195. https://doi.org/10.1016/j.solmat.2013.06.039

    Article  Google Scholar 

  • Tuschel DD, Lavine JP (1999) Micro-Raman characterization of unusual defect structure in arsenic-implanted silicon. MRS Online Proc Library. https://doi.org/10.1557/PROC-588-227

    Google Scholar 

  • Voutsas AT, Hatalis MK, Boyce J, Chiang A (1995) Raman spectroscopy of amorphous and microcrystalline silicon films deposited by low-pressure chemical vapor deposition. J Appl Phys 78(12):6999–7006. https://doi.org/10.1063/1.360468

    Article  Google Scholar 

  • Wu C-L, Lin G-R (2012) Inhomogeneous linewidth broadening and radiative lifetime dispersion of size dependent direct bandgap radiation in Si quantum dot. AIP Adv 2(4):042162. https://doi.org/10.1063/1.4769362

    Article  Google Scholar 

  • Yang TC-J, Kauffmann Y, Wu L, Lin Z, Jia X, Puthen-Veettil B, Zhang T, Conibeer G, Perez-Wurfl I, Rothschild A (2014) In-situ high resolution transmission electron microscopy observation of silicon nanocrystal nucleation in a SiO2 bilayered matrix. Appl Phys Lett 105(5):053116. https://doi.org/10.1063/1.4892658

    Article  Google Scholar 

  • Zhang T, Simonds B, Nomoto K, Veettil BP, Lin Z, Wurfl IP, Conibeer G (2016) Pulsed KrF excimer laser dopant activation in nanocrystal silicon in a silicon dioxide matrix. Appl Phys Lett 108(8):083103. https://doi.org/10.1063/1.4942466

    Article  Google Scholar 

  • Zoppi G, Beattie N, Major J, Miles R, Forbes I (2011) Electrical, morphological and structural properties of RF magnetron sputtered Mo thin films for application in thin film photovoltaic solar cells. J Mater Sci 46(14):4913–4921. https://doi.org/10.1007/s10853-011-5404-0

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Australian Government through the Australian Renewable Energy Agency (ARENA). Responsibility for the views, information or advice expressed herein is not accepted by the Australian Government. This work also was supported by the National Natural Science Foundation of China (Grant nos. 51272033, 51572037, 51335002, 91648109). The authors acknowledge the facilities, and the scientific and technical assistance of the Australian Microscopy & Microanalysis Research Facility at the Electron Microscope Unit at the University of New South Wales, as well as the Australian Centre for Microscopy & Microanalysis at the University of Sydney. The authors would also like to thank Fangyang Liu for his efforts in preparation of sputtered Mo thin films.

Funding

This study was supported by the Australian Government through the Australian Renewable Energy Agency (ARENA). Responsibility for the views, information or advice expressed herein is not accepted by the Australian Government. This work also was supported by the National Natural Science Foundation of China (Grant nos. 51272033, 51572037, 51335002, 91648109).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xuguang Jia or Jianning Ding.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, X., Lin, Z., Yang, T.CJ. et al. High-temperature annealing effects on molybdenum–silicon contact substrate for vertically structured silicon quantum-dot solar cells. Appl Nanosci 9, 135–142 (2019). https://doi.org/10.1007/s13204-018-0893-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13204-018-0893-7

Keywords

Navigation