Skip to main content
Log in

Carbon nanotubes grown on oil palm shell powdered activated carbon as less hazardous and cheap substrate

  • Original Article
  • Published:
Applied Nanoscience Aims and scope Submit manuscript

Abstract

Multiwall carbon nanotubes were synthesised using fixed catalyst in a chemical vapor deposition reactor. The reactor system was locally built and used to grow carbon nanotubes (CNTs) on oil palm shell powdered activated carbon (PAC). The PAC was impregnated with Fe3+ catalyst through sonication process. The nano-micro composite produced in this study was named as “CNT-PAC”. Acetylene (C2H2) gas was used as carbon source compared to the use of toxic hydrocarbons such as benzene (C6H6). Synthesis parameters such as gas flow rates, temperature and reaction time were varied for high yield of the CNTs on powdered activated carbon. The CNT-PAC samples were characterized using field emission electron microscope and transmission electron microscope to confirm the growth of CNT as well as to study the morphology of the nano product. Selected well-grown CNT-PAC were further characterized using Fourier transform infrared spectroscopy, thermal gravimetric analysis and BET surface area measurement. The results showed that BET surface area was improved from 101.1 to 974.9 m2/g. The Zeta potential was − 46.1 mV. The zeta potential of the nano-micro composite indicated that the material will be in good dispersion in aqueous solution. The CNT-PAC product was also oxidized using KMnO4 to functionalise various radicals on the surfaces. The product could be potential as an adsorbent for gaseous and aqueous pollutants due to its high surface area and the presence of various functional groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Ahmed YM, Al-Mamun A, Jameel AT, AlKhatib MA, Amosa MK, AlSaadi MA (2016) Synthesis and characterization of carbon nanofibers grown on powdered activated carbon. J Nanotechnol 2016:1538602. https://doi.org/10.1155/2016/1538602

    Article  CAS  Google Scholar 

  • AlSaadi MA, Al Mamun A, Muyibi SA, Alam MZ, Sopyan I, Atieh MA, Ahmed YM (2011) Synthesis of various carbon nanomaterials (CNMs) on powdered activated carbon. Afr J Biotechnol 10(81):18892–18905

    CAS  Google Scholar 

  • Awasthi K, Awasthi S, Srivastava A, Kamalakaran R, Talapatra S, Ajayan P et al (2006) Synthesis and characterization of carbon nanotube–polyethylene oxide composites. Nanotechnology 17:5417

    Article  CAS  Google Scholar 

  • Basso M, Cerrella E, Cukierman A (2002) Activated carbons developed from a rapidly renewable biosource for removal of cadmium (II) and nickel (II) ions from dilute aqueous solutions. Ind Eng Chem Res 41(2):180–189

    Article  CAS  Google Scholar 

  • Bethune DS, Kiang CH, deVries MS, Gorman G, Savoy R, Vazquez J, Beyers R (1993) Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls. Nature 363:605–607

    Article  CAS  Google Scholar 

  • Chan C, Crawford G, Gao Y, Hurt R, Jian K, Li H et al (2005) Liquid crystal engineering of carbon nanofibers and nanotubes. Carbon 43(12):2431–2440

    Article  CAS  Google Scholar 

  • Cheng J, Zhang X, Liu F, Tu J, Lu H, Sun Y et al (2004) Long bundles of aligned carbon nanofibers obtained by vertical floating catalyst method. Mater Chem Phys 87(2–3):241–245

    Article  CAS  Google Scholar 

  • Cheol JL, Seung C, Woo KH, Cheol W (2002) Large-scale production of aligned carbon nanotubes by the vapor phase growth method. Chem Phys Lett 359:109–114

    Article  Google Scholar 

  • Chuang K, Liu Z, Lu C, Wey M (2009) Influence of catalysts on the preparation of carbon nanotubes for toluene oxidation. Ind Eng Chem Res 48(9):4202–4209

    Article  CAS  Google Scholar 

  • Ci L, Zhu H, Wei B, Xu C, Liang J, Wu D (2000) Graphitization behavior of carbon nanofibers prepared by the floating catalyst method. Mater Lett 43(5–6):291–294

    Article  CAS  Google Scholar 

  • Dabrowski A, Podkoscielny P, Hubicki Z, Barczak M (2005) Adsorption of phenolic compounds by activated carbon—a critical review. Chemosphere 58(8):1049–1070

    Article  CAS  Google Scholar 

  • Dai H, Hafner JH, Rinzler AG, Colbert DT, Smalley RE (1996) Nanotubes as nanoprobes in scanning probe microscopy. Nature 384:47–150

    Article  Google Scholar 

  • Delzeit L, Nguyen C, Chen B, Stevens R, Cassell A, Han J et al (2002) Multiwalled carbon nanotubes by chemical vapor deposition using multilayered metal catalysts. J Phys Chem B 106(22):5629–5635

    Article  CAS  Google Scholar 

  • Dumanli AM, Yürüm Y (2011) Carbon nanotube and nanofiber growth on Zn based catalysts. Fullerenes, Nanotubes Carbon Nanostruct 19(3):155–165

    Article  CAS  Google Scholar 

  • Ebbesen TW, Ajayan PM (1992) Large-scale synthesis of carbon nanotubes. Nature 358:220–222

    Article  CAS  Google Scholar 

  • Flahaut E, Laurent C, Peigney A (2005) Catalytic CVD synthesis of double and triple-walled carbon nanotubes by the control of the catalyst preparation. Carbon 43(2):375–383

    Article  CAS  Google Scholar 

  • Harris (2005) Growth of multi-walled carbon nanotubes by injection CVD using cyclopentadienyliron dicarbonyl dimmer and cyclooctatetraene iron tricarbonyl. Mater Sci Eng B 116:369–374

    Article  Google Scholar 

  • Hiraoka T, Kawakubo T, Kimura J, Taniguchi R, Okamoto A, Okazaki T et al (2003) Selective synthesis of double-wall carbon nanotubes by CCVD of acetylene using zeolite supports. Chem Phys Lett 382(5–6):679–685

    Article  CAS  Google Scholar 

  • Huq MM, Hsieh TC, Ho CY (2016) Preparation of carbon nanotube-activated carbon hybrid electrodes by electrophoretic deposition for supercapacitor applications. Diam Relat Mater 62:58–64

    Article  CAS  Google Scholar 

  • Hussien M (2005) Synthesis, characterization and application of carbon nanotubes and carbon nanofibers. PhD Thesis, Faculty of Engineering, Universiti Putra Malaysia (UPM)

  • Ibukun O, Jeong HK (2018) An activated carbon and carbon nanotube composite for a high-performance capacitor. New Phys Sae Mulli 68(2):185–188

    Article  Google Scholar 

  • Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354(6348):56–58

    Article  CAS  Google Scholar 

  • Jia Y, Thomas K (2000) Adsorption of cadmium ions on oxygen surface sites in activated carbon. Langmuir 16(3):1114–1122

    Article  CAS  Google Scholar 

  • Kandah M, Meunier J (2007) Removal of nickel ions from water by multi-walled carbon nanotubes. J Hazard Mater 146(1–2):283–288

    Article  CAS  Google Scholar 

  • Kato T, Haruta K, Kusakabe K, Morooka S (1992) Formation of vapor-grown carbon fibers on a substrate. Carbon 30(7):989–994

    Article  CAS  Google Scholar 

  • Kim Y, Hayashi T, Endo M, Kaburagi Y, Tsukada T, Shan J et al (2005) Synthesis and structural characterization of thin multi-walled carbon nanotubes with a partially facetted cross section by a floating reactant method. Carbon 43(11):2243–2250

    Article  CAS  Google Scholar 

  • Kuo C, Lin H (2009) Adsorption of aqueous cadmium (II) onto modified multi-walled carbon nanotubes following microwave/chemical treatment. Desalination 249(2):792–796

    Article  CAS  Google Scholar 

  • Kuo C, Bai A, Huang C, Li Y, Hu C, Chen C (2005) Diameter control of multiwalled carbon nanotubes using experimental strategies. Carbon 43(13):2760–2768

    Article  CAS  Google Scholar 

  • Lahaye J, Prado G, Donnet J (1974) Nucleation and growth of carbon black particles during thermal decomposition of benzene. Carbon 12(1):27–35

    Article  CAS  Google Scholar 

  • László K, Podkoscielny P, Dabrowski A (2006) Heterogeneity of activated carbons with different surface chemistry in adsorption of phenol from aqueous solutions. Appl Surf Sci 252(16):5752–5762

    Article  Google Scholar 

  • Li Y, Ding J, Luan Z, Di Z, Zhu Y, Xu C et al (2003) Competitive adsorption of Pb2+, Cu2+ and Cd2+ ions from aqueous solutions by multiwalled carbon nanotubes. Carbon 41(14):2787–2792

    Article  CAS  Google Scholar 

  • Louis B, Gulino G, Vieira R, Amadou J, Dintzer T, Galvagno S et al (2005) High yield synthesis of multi-walled carbon nanotubes by catalytic decomposition of ethane over iron supported on alumina catalyst. Catal Today 102:23–28

    Article  Google Scholar 

  • Mamun AA, Ahmed YM, Al-Khatib MFR, Jameel AT, AlSaadi MA (2015) Lead sorption by carbon nanofibers grown on powdered activated carbon—kinetics and equilibrium. Nano 10(2):1550017-1–1550017-8

    Article  Google Scholar 

  • Martin D (2006) Trends in nanotubes research. Nova Science Pub Inc, New York

    Google Scholar 

  • Meyyappan M, Delzeit L, Cassell A, Hash D (2003) Carbon nanotube growth by PECVD: a review. Plasma Sources Sci Technol 12:205

    Article  CAS  Google Scholar 

  • Muataz AA, Fettouhi M, Al Mamun A, Yahya N (2009) Lead removal by using carbon nanotubes. Int J Nanopart 2(J-4):329–338

    Article  CAS  Google Scholar 

  • Oberlin A, Endo T (1976) Filamentous growth of carbon through benzene decomposition. J Cryst Growth 32(3):335–349

    Article  CAS  Google Scholar 

  • Otsuka K, Abe Y et al (2004) Synthesis of carbon nanotubes on Ni/carbon-fiber catalysts under mild conditions. Carbon 42(4):36

    Article  Google Scholar 

  • Ozalp N, Epstein M, Kogan A (2009) An overview of solar thermochemical hydrogen, carbon nano-materials and metals production technologies. Chem Eng Trans. https://doi.org/10.3303/CET0918158

    Article  Google Scholar 

  • Perez-Cabero M, Rodriguez-Ramos I, Guerrero-Ruiz A (2003) Characterization of carbon nanotubes and carbon nanofibers prepared by catalytic decomposition of acetylene in a fluidized bed reactor. J Catal 215(2):305–316

    Article  CAS  Google Scholar 

  • Qiu J, Li Y, Wang Y, Liang C, Wang T, Wang D (2003) A novel form of carbon micro-balls from coal. Carbon 41(4):767–772

    Article  CAS  Google Scholar 

  • Rinaldi A, Abdullah N, Ali M, Furche A, Hamid S, Su D, Schlögl R (2009) Controlling the yield and structure of carbon nanofibers grown on a nickel/activated carbon catalyst. Carbon 47:3023–3033

    Article  CAS  Google Scholar 

  • Ruparelia JP, Duttagupta SP, Chatterjee AK, Mukherji S (2008) Potential of carbon nanomaterials for removal of heavy metals from water. Desalination 232:145–156

    Article  CAS  Google Scholar 

  • Schneider JJ, Maksimova NI, Engstler J, Joshi R, Schierholz R, Feile R (2008) Catalyst free growth of a carbon nanotube–alumina composite structure. Inorg Chim Acta 361(6):1770–1778

    Article  CAS  Google Scholar 

  • See C, Harris A (2007) A review of carbon nanotube synthesis via fluidized-bed chemical vapor deposition. Ind Eng Chem Res 46(4):997–1012

    Article  CAS  Google Scholar 

  • Smith B (1999) Infrared spectral interpretation: a systematic approach. CRC Press, Boca raton

    Google Scholar 

  • Stampfer C, Helbling T, Obergfell D, Schöberle B, Tripp M, Jungen A et al (2006) Fabrication of single-walled carbon-nanotube-based pressure sensors. Nano Lett 6(2):233–237

    Article  CAS  Google Scholar 

  • Sun L, Liu Z, Ma X, Tang D, Zhou W, Zou X et al (2001) Growth of carbon nanofibers array under magnetic force by chemical vapor deposition. Chem Phys Lett 336(5–6):392–396

    Article  CAS  Google Scholar 

  • Tahir H (2009) Carbon nanotubes, carbon fibers and carbon nanofibers for natural rubber applications. MSc Thesis, Faculty of Engineering, Universiti Putra Malaysia (UPM)

  • Tang DM, Liu C, Li F, Ren WC, Du JH, Ma XL et al (2009) Structural evolution of carbon microcoils induced by a direct current. Carbon 47(3):670–674

    Article  CAS  Google Scholar 

  • Tans SJ, Verschueren ARM, Dekker C (1998) Room-temperature transistor based on a single carbon nanotube. Nature 393(6680):49–52

    Article  CAS  Google Scholar 

  • Tasis D, Tagmatarchis N, Bianco A, Prato M (2006) Chemistry of carbon nanotubes. Chem Rev 106(3):1105–1136

    Article  CAS  Google Scholar 

  • Thess A, Lee R, Nikolaev P, Dai H, Petit P, Robert J et al (1996) Crystalline ropes of metallic carbon nanotubes. Science 273(5274):483

    Article  CAS  Google Scholar 

  • Veziri CM, Pilatos G, Karanikolos GN, Labropoulos A, Kordatos K, Kasselouri-Rigopoulou V et al (2008) Growth and optimization of carbon nanotubes in activated carbon by catalytic chemical vapor deposition. Microporous Mesoporous Mater 110(1):41–50

    Article  CAS  Google Scholar 

  • Veziri CM, Karanikolos GN, Pilatos G, Vermisoglou EC, Giannakopoulos K, Stogios C et al (2009) Growth and morphology manipulation of carbon nanostructures on porous supports. Carbon 47(9):2161–2173

    Article  CAS  Google Scholar 

  • Xing Y (2004) Synthesis and electrochemical characterization of uniformly-dispersed high loading Pt nanoparticles on sonochemically-treated carbon nanotubes. J Phys Chem B 108(50):19255–19259

    Article  CAS  Google Scholar 

  • Xu XJ, Huang SM (2007) Carbon dioxide as a carbon source for synthesis of carbon nanotubes by chemical vapor deposition. Mater Lett 61(21):4235–4237

    Article  CAS  Google Scholar 

  • Xu Z, Lin J, Roy V, Ou Y, Liao D (2005) Catalytic synthesis of carbon nanotubes and carbon spheres using Kaolin supported catalyst. Mater Sci Eng B 123(2):102–106

    Article  Google Scholar 

  • Yacamán MJ, Miki-Yoshida M, Rendón L, Santiesteban JG (1993) Catalytic growth of carbon microtubules with fullerene structure. Appl Phys Lett 62:657

    Article  Google Scholar 

  • Yang S, Li J, Shao D, Hu J, Wang X (2009) Adsorption of Ni (II) on oxidized multi-walled carbon nanotubes: effect of contact time, pH, foreign ions and PAA. J Hazard Mater 166(1):109–116

    Article  CAS  Google Scholar 

  • Zheng G, Kouda K, Sano H, Uchiyama Y, Shi Y, Quan H (2004) A model for the structure and growth of carbon nanofibers synthesized by the CVD method using nickel as a catalyst. Carbon 42(3):635–640

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to express their gratitude to The Ministry of Higher Education (MOHE) of the Government of Malaysia for funding this project (Fundamental Research Grant Scheme with Grant no. FRGS 0106-42).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdullah Al Mamun.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mamun, A.A., AlSaadi, M.A., Alam, M.Z. et al. Carbon nanotubes grown on oil palm shell powdered activated carbon as less hazardous and cheap substrate. Appl Nanosci 8, 1767–1779 (2018). https://doi.org/10.1007/s13204-018-0861-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13204-018-0861-2

Keywords

Navigation