Skip to main content
Log in

Photocatalytic activity of Bi2S3 enlargement by decoration of silver for visible light thiophene degradation

  • Original Article
  • Published:
Applied Nanoscience Aims and scope Submit manuscript

Abstract

Bi2S3 nanofibers were prepared via a hydrothermal technique and a photoassisted deposition way was applied to prepare silver-decorated Bi2S3 nanocomposites. Bi2S3 nanofibers and silver-decorated Bi2S3 nanocomposites were investigated using many characterization tools such as X-ray diffraction, field-emission scanning electron microscopy, photoluminescence emission spectra, X-ray photoelectron spectroscopy, ultraviolet and visible spectroscopy, and BET surface area. Photocatalytic destruction of thiophene was selected to determine the photocatalytic performance of Bi2S3 nanofibers and silver-decorated Bi2S3 nanocomposites. XRD results confirm the formation of Bi2S3 nanofibers. FSEM results reveal Bi2S3 nanofiber structure and silver was decorated on surface of Bi2S3 nanofibers. XPS results reveal that state of decorated silver is metallic. Decoration of Bi2S3 nanofibers by silver decreases electron–hole recombination rat, decreases bandgap, and increases photocatalytic activity. 0.3 wt% Ag/Bi2S3 photocatalyst has the top photocatalytic activity by which 100% thiophene was degraded within 60 min using 1.6 g/l photocatalyst dose. 0.3 wt% Ag/Bi2S3 photocatalyst has photocatalytic stability for five times use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Aazam ES (2014) Visible light photo catalytic degradation of thiophene using Ag–TiO2/multi-walled carbon nano tubes nano composite Ceram. Int 40:6705–6711

    CAS  Google Scholar 

  • Abdelaala MY, Mohamed RM (2014) Environmental remediation from thiophene solution by photocatalytic oxidation using a Pd/ZrO2–chitosan nanocomposite. Ceram Int 40:7693–7699

    Article  Google Scholar 

  • Amaral RA, Habert AC, Borges CP (2014) Activated carbon polyurethane membrane for a model fuel desulfurization by pervaporation. Mater Lett 137:468–470

    Article  CAS  Google Scholar 

  • Aresti M, Saba M, Piras R, Marongiu D, Mula G, Quochi F, Mura A, Cannas C, Mureddu M, Ardu A, Ennas G, Calzia V, Mattoni A, Musinu A, Bongiovanni G (2014) Colloidal Bi2S3 nanocrystals: quantum size effects and midgap states. Adv FunctMater 24:3341–3350

    Article  CAS  Google Scholar 

  • Baeissa E (2014) Environmental remediation of thiophene solution by photocatalytic oxidation using NiO/AgInS2 nanoparticles. J Ind Eng Chem 20:3270–3275

    Article  CAS  Google Scholar 

  • Bao HF, Li CM, Cui XQ, Gan Y, Song QL, Guo J (2008) Synthesis of a highly ordered single-crystalline Bi2S3 nanowire array and its metal/semiconductor/metal back-to-back schottky diode. Small 4:1125–1129

    Article  CAS  Google Scholar 

  • Barker EL, Peter EB, Petrecia HF, Grant SK (1978) Phenol poisoning due to contaminated drinking water. Arch Environ Health 33(2):89–94

    Article  Google Scholar 

  • Barmala M, Moghadam AZ, Omidkhah MR (2015) Increased photo-catalytic removal of sulfur using titania/MWCNT composite. J Cent South Univ 22:1066–1070

    Google Scholar 

  • Bettermann I, Staudt C (2009) Desulphurization of kerosene: pervaporation of benzothiophene/n-dodecane mixtures. J Membr Sci 343:119–127

    Article  CAS  Google Scholar 

  • Bhattacharya RN, Pramanik P (1982) Semiconductor liquid junction solar cell basedon chemically deposited Bi2S3 thin film and some semiconducting propertiesof bismuth chalcogenide. J Electrochem Soc 129:332–335

    Article  CAS  Google Scholar 

  • Biswas K, Zhao LD, Kanatzidis MG (2012) Tellurium-Free thermoelectric theanisotropic n-type semiconductor Bi2S3. Adv Energy Mater 2:634

    Article  CAS  Google Scholar 

  • Bösmann A, Datsevich L, Jess A, Lauter A, Schmitz C, Wasserscheid P (2001) Deep desulfurization of diesel fuel by extraction with ionic liquids. Chem Commun 23:2494–2495

    Article  Google Scholar 

  • Boukoberine Y, Hamada B (2016) Thiophene hydrodesulfurization over CoMo/Al2O3-CuY catalysts: Temperature effect study. Arabian J Chem: 9:522–527

    Article  Google Scholar 

  • Chen J, Li J, Qi R, Ye H, Chen C (2008) Pervaporation performance of crosslinked polydimethyl siloxane membranes for deep desulfurization of FCC gasoline I. Effect of different sulfur species. J Membr Sci 322:113–121

    Article  CAS  Google Scholar 

  • Chen J, Yang X-Q, Meng Y-Z, Qin M-Y, Yan D-M, Qian Y, Xu G-Q, Yu Y, Ma Z-Y, Zhao Y-D (2013) Reverse microemulsion-mediated synthesis of Bi2S3–QD@SiO2–PEG for dual modal CT-fluorescence imaging in vitro and in vivo. ChemCommun 49:11800–11802

    CAS  Google Scholar 

  • Dedual G, MacDonald MJ, Alshareef A, Wub Z, Tsang DCW, Yip ACK (2014) Requirements for effective photocatalytic oxidative desulfurization of a thiophene-containing solution using TiO2. J Environ Chem Eng 2:1947–1955

    Article  CAS  Google Scholar 

  • Gao X, Fu F, Zhang L, Li W (2013) The preparation of Ag–BiVO4 metal composite oxides and its application in efficient photocatalytic oxidative thiophene. Phys B 419:80–85

    Article  CAS  Google Scholar 

  • Gates BC, Topsoe H (1997) Reactivities in deep catalytic hydrodesulfurization: challenges, opportunities, and the importance of 4 methyldibenzothiophene and 4,6-dimethyl-dibenzothiophene. Polyhedron 16:3213–3217

    Article  Google Scholar 

  • Jain M, Attarde D, Gupta S (2015) Removal of thiophene from n-heptane/thiophene mixtures by spiral wound pervaporation module: modeling, validation and influence of operating conditions. J of Membr Sci 490:328–345

    Article  CAS  Google Scholar 

  • Jain M, Attarde D, Gupta S (2016) Influence of hydrocarbon species on the removal of thiophene from FCC gasoline by using a spiral wound pervaporation module. J Membr Sci 507:43–54

    Article  CAS  Google Scholar 

  • Jain M, Attarde D, Gupta S (2017) Removal of thiophenes from FCC gasoline by using a hollow fiber pervaporation module: modeling, validation, and influence of module dimensions and flow directions. Chem Eng J 308:632–648

    Article  CAS  Google Scholar 

  • Kabe T, Ishiharam A, Tajima H (1992) Hydrodesulfurization of sulfur containing polyaromatic compounds in light oil. Ind Eng Chem Res: 31:1577

    Article  CAS  Google Scholar 

  • Kadam S-R, Panmand R-P, Sonawane R-S, Gosavi S-W, Kale B-B (2015) A stable Bi2S3 quantum dot-glass nanosystem: size tunable photocatalytic hydrogen production under solar light. RSC Adv 5:58485–58490

    Article  CAS  Google Scholar 

  • Kilanowski DR, Teeuwen H, De Beer VHJ, Gates BC, Schuit BCA, Kwart H (1978) Hydrodesulfurization of thiophene, benzothiophene, dibenzothiophene, and related compounds catalyzed by sulfided CoO–MoO3/Al2O3: low-pressure reactivity studies. J Catal 55:129–137

    Article  CAS  Google Scholar 

  • Konietzny R, Koschine T, Rätzke K, Staudt C (2014) POSS-hybrid membranes for the removal of sulfur aromatics by pervaporation. Sep Purif Technol 123:175–182

    Article  CAS  Google Scholar 

  • Li W-X, Yang J-Y, Jiang Q-H, Luo Y-B, Hou Y-R, Zhou S-Q, Xiao Y, Fu L-W, Zhou Z-W (2016) Electrochemical atomic layer deposition of Bi2S3/Sb2S3 quantum dots cosensitized TiO2 nanorods solar cells. J Power Sources 307:690–696

    Article  CAS  Google Scholar 

  • Lin L, Zhang Y, Kong Y (2009) Recent advances in sulfur removal from gasoline by pervaporation. Fuel 88:1799–1809

    Google Scholar 

  • Lin L, Wang A, Dong M, Zhang Y, He B, Li H (2012) Sulfur removal from fuel using zeolites/polyimide mixed matrix membrane adsorbents. J Hazard Mater 203:204–212

    Article  Google Scholar 

  • Lin L, Dong M, Liu C, Sun H, Zhang L, Zhang C, Deng P, Li Y (2014) Building movable bridges in membrane matrix by polyrotaxane crosslinking for sulfur removal. Mater Lett 126:59–62

    Article  CAS  Google Scholar 

  • Lina F, Jiangb Z, Tangb N, Zhangb C, Chenb Z, Liub T, Donga B (2016) Photocatalytic oxidation of thiophene on RuO2/SO42–TiO2: Insights for cocatalyst and solid-acid. Appl Catal B: 188:253–258

    Article  Google Scholar 

  • Liu K, Fang C-J, Li Z-Q, Young M (2014a) Separation of thiophene/n-heptane mixtures using PEBAX/PVDF-composited membranes via pervaporation. J Membr Sci 451:24–31

    Article  CAS  Google Scholar 

  • Liu G, Zhou T, Hu WLiu,S, Pan F, Wu H, Jiang Z, Wang B, Yang J, Cao X (2014b) Enhanced desulfurization performance of PDMS membranes by incorporating silver decorated dopamine nanoparticles. J Mater ChemA 2:12907–12917

    Article  CAS  Google Scholar 

  • Luo Y, Chen H, Li X, Gong Z, Wang X, Peng X, He M, Sheng Z (2013) Wet chemicalsynthesis of Bi2S3 nanorods for efficient photocatalysis. J Mater Lett 105:12–15

    Article  CAS  Google Scholar 

  • Lv P, Fu W-Y, Yang H-B, Sun H-R, Chen Y-L, Ma J-W, Zhou X-M, Tian L-C, Zhang W-J, Li M-J, Yao H-Z, Wu D (2013) Simple synthesis method of Bi2S3/CdS quantum dots cosensitized TiO2 nanotubes array with enhanced photoelectrochemical and photocatalytic activity. Cryst Eng Comm 15:7548–7555

    Article  CAS  Google Scholar 

  • Ma X, Sakanishi K, Mochida I (1994) Hydrodesulfurization reactivities of various sulfur compounds in diesel fuel. Ind Eng Chem Res 33:218–222

    Article  CAS  Google Scholar 

  • Ma X, Sakanishi K, Isoda T, Mochida I (1995) Hydrodesulfurization reactivities of narrow-cut fractions in a gas oil. Ind Eng Chem Res 34:748–754

    Article  CAS  Google Scholar 

  • Ma X, Sun L, Yin Z, Song C (2001) New approaches to deep desulfurization of diesel fuel, jet fuel, and gasoline by adsorption for ultra-clean fuels and for fuel cell applications. Am Chem Soc Div Fuel Chem Prepr 46:648

    CAS  Google Scholar 

  • Ma X, Sun L, Song C (2002a) A new approach to deep desulfurization of gasoline, diesel fuel and jet fuel by selective adsorption for ultra-clean fuels and for fuel cell applications. Catal Today 77:107–116

    Article  CAS  Google Scholar 

  • Ma X, Sprague M, Sun L, Song C (2002b) Deep desulfurization of liquid hydrocarbons by selective adsorption for fuel cell applications. Am Chem Soc Div Petrol Chem Prepr 47:48

    CAS  Google Scholar 

  • Ma JM, Liu ZF, Lian JB, Duan XC, Kim T, Peng P, Liu XD, Chen Q, Yao G, Zheng WJ (2011) Ionic liquids-assisted synthesis and electrochemical properties ofBi2S3nanostructures. Cryst Eng Commun 13:3072–3079

    Article  CAS  Google Scholar 

  • Mafi M, Mokhtarani B, Dehghani MR (2016) Removal of thiophene from model diesel oil with nitrate based ionic liquids at several temperatures. J Mol Liq 221:1104–1110

    Article  CAS  Google Scholar 

  • Mansur A-A-P, Ramanery F-P, Oliveira L-C, Mansur HS (2016) Carboxymethyl chitosan functionalization of Bi2S3 quantum dots: towards eco-friendly fluorescent core-shell nanoprobes. Carbohydr Polym 146:455–466

    Article  CAS  Google Scholar 

  • Marques FC, Canela MC, Stumbo AM (2008) Use of TiO2/Cr-MCM-41 molecular sieve irradiated with visible light for the degradation of thiophene in the gas phase. Catal Today 133:594–599

    Google Scholar 

  • Miller B, Heller A (1976) Semiconductor liquid junction solar cells based on anodicsulphide films. Nature 262:680–681

    Article  CAS  Google Scholar 

  • Mohamed RM, Aazam ES (2014a) Preparation and characterization of core–shell polyaniline/mesoporous Cu2O nanocomposites for the photo catalytic oxidation of thiophene. Appl Catal A 480:100–107

    Article  CAS  Google Scholar 

  • Mohamed RM, Aazam ES (2014b) New visible-light Pt/PbS nanoparticle photocatalysts for the photocatalytic oxidation of thiophene. Clean Soil Air Water 42:1–6

    Google Scholar 

  • Mokhtarani B, Mansourzareh H, Mortaheb HR (2014) Phase behavior of nitrate based ionic liquids with thiophene and alkanes. Ind Eng Chem Res 53(3):1256–1261

    Article  CAS  Google Scholar 

  • Olguin-Orozco E, Vrinat M, Cedeno L, Ramirez J, Boroque M, Lopez AA (1997) The use of TiO2–Al2O3 binary oxides as supports for Mo based catalysts in hydrodesulfurization of thiophene and dibenzothiophene. Appl Catal A 165:1–13

    Article  Google Scholar 

  • Qi R, Wang Y, Li J, Zhu S (2006) Sulfur removal from gasoline by pervaporation: the effect of hydrocarbon species. Sep Purif Technol 51:258–264

    Article  CAS  Google Scholar 

  • Qi H, Zhai S, Wang Z, Zhai B, An Q (2015) Designing recyclable Cu/ZrSBA-15 for efficient thiophene removal. Microporous Mesoporous Mater 217:21–29

    Article  CAS  Google Scholar 

  • Qu H, Kong Y, Lv H, Zhang Y, Yang J, Shi D (2010) Effect of crosslinking on sorption, diffusion and pervaporation of gasoline components in hydroxyl ethyl cellulose membranes. Chem Eng J 157:60–66

    Article  CAS  Google Scholar 

  • Rock KL (2002) Ultra-low sulfur gasoline via catalytic distillation. In: Proceedings of the Fifth International Conference on Refinery Processing. AIChE 2002 Spring National Meeting, New Orleans, LA, 11–14, 200–205

  • Rock R, Shorey S (2003) Producing low sulfur gasoline reliably, AM-03 122. In: Proceedings of the NPRA 2003 Annual Meeting, San Antonio, TX, March 23–25

  • Sarkar I, Ghosh AB, Saha N, Srivastava DN, Paul P, Adhikary B (2016) Enhanced photocatalytic performance of morphologically tuned Bi2S3 nanoparticles in the degradation of organic pollutants under visible light irradiation. J Colloid Interface Sci 483:49–59

    Article  CAS  Google Scholar 

  • Song C (2003) An overview of new approaches to deep desulfurization for ultra-clean gasoline, diesel fuel and jet fuel. Catal Today 86:211–263

    Article  CAS  Google Scholar 

  • Song S-S, Song A-X, Hao J-C (2014) Hexagonal hollow microtubes incorporated Bi2S3-quantum-dots for catalytic degradation of dyes. J Colloid Interface Sci 413:133–139

    Article  CAS  Google Scholar 

  • Teng-fei W, Ye Z, Hui G, Ming-xing T, Li-gong Z, Zhan-jun L, Xue-kuan LI (2015) Hydrodesulfurization of thiophene over Mo/AC catalyst presulfided by ammonium thiosulfate. J Fuel Chem Technol 43:202–207

    Article  Google Scholar 

  • Velu S, Ma X, Song C (2002) Zeolite-based adsorbent for desulfurization of jet fuel by selective adsorption. Am Chem Soc Div Fuel: ChemPrepr 47:447–448

    CAS  Google Scholar 

  • Velu S, Watanable S, Ma X, Song C (2003a) Development of selective adsorbent for removing sulfur from gasoline for fuel cell applications. Am Chem Soc Div Petrol Chem Prepr 48:56–57

    CAS  Google Scholar 

  • Velu S, Ma X, Song C (2003b) Fuel cell grade gasoline production by selective adsorption for removing sulfur. Am Chem Soc Div Petrol Chem Prepr 48:58–59

    CAS  Google Scholar 

  • Vogel R, Hoyer P, Weller HJ (1994) Quantum-sized PdS, CdS, AgS, Sb2S3 and Bi2S3 particles as sensitizers for various nanoporous wide band-gap semiconductors. J Phys Chem 98:3183–3188

    Article  CAS  Google Scholar 

  • Wang L, Cai H, Li S, Mominou N (2013) Ultra-deep removal of thiophene compounds in diesel oil over catalyst TiO2/Ni-ZSM-5 assisted by ultraviolet irradiating. Fuel 105:752–756

    Google Scholar 

  • Xue L, Zhang D, Xu Y, Liu X (2017) Adsorption of thiophene compounds on MoO3/ɤ-Al2O3 catalysts with different mesopore sizes. Microporous Mesoporous Mater 238:45–55

    Article  Google Scholar 

  • Yang Z, Wang T, Zhan X, Li J, Chen J (2013) Poly [bis(p-methylphenyl) phosphazene] pervaporative membranes for separating organo sulfur compounds from n-heptane and its surface functionalization. Ind Eng Chem Res 52:13801–13809

    Article  CAS  Google Scholar 

  • Yang Z, Zhang W, Wang T, Li J (2014) Improved thiophene solution selectivity by Cu2+, Pb2+ and Mn2+ ions inpervaporative poly [bis (p-methylphenyl) phosphazene] desulfurization membrane. J Membr Sci 454:463–469

    Article  CAS  Google Scholar 

  • Yao K, Gong WW, Hu YF, Liang XL, Chen Q, Peng LM (2008) Individual Bi2S3 nanowire-based room-temperature H2 sensor. J Phys Chem C 112:8721–8724

    Article  CAS  Google Scholar 

  • Yu S, Pan F, Yang S, Ding H, Jiang Z, Wang B, Li Z, Cao X (2015) Enhanced pervaporation performance of MIL-101(Cr) filled polysiloxane hybrid membranes in desulfurization of model gasoline. Chem Eng Sci 135:479–488

    Article  CAS  Google Scholar 

  • Zhang SG, Zhang ZC (2002) Novel properties of ionic liquids in selective sulfur removal from fuels at room temperature. Green Chem 4:376–379

    Article  CAS  Google Scholar 

  • Zhang B, Ye XC, Hou WY, Zhao Y, Xie Y (2006) Biomolecule-assisted synthesisand electrochemical hydrogen storage of Bi2S3 flowerlike patterns withwell-aligned nanorods. J Phys Chem B 110(18):8978–8985

    Article  CAS  Google Scholar 

  • Zhao C, Li J, Qi R, Chen J, Luan Z (2008) Pervaporation separation of n heptane/sulfur species mixtures with poly dimethyl siloxane membranes. Purif Technol 63:220–225

    Article  CAS  Google Scholar 

  • Zumeta-Dubé A, Ortiz-Quiñonez JL, Díaz D, Trallero-Giner C, Ruiz-Ruiz V-F (2014) First order Raman scattering in bulk Bi2S3 and quantum dots: reconsidering controversial interpretations. J Phys Chem C 118:30244–30252

    Article  Google Scholar 

Download references

Acknowledgements

This Project was funded by the Deanship of Scientific Research (DSR) at King Abdulaziz University, Jeddah, under grant no. (G-28-130-1439.) The authors, therefore, acknowledge, with thanks, DSR for the technical and financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Mkhalid.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mkhalid, I.A. Photocatalytic activity of Bi2S3 enlargement by decoration of silver for visible light thiophene degradation. Appl Nanosci 8, 1855–1864 (2018). https://doi.org/10.1007/s13204-018-0860-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13204-018-0860-3

Keywords

Navigation