Advertisement

Applied Nanoscience

, Volume 8, Issue 3, pp 499–509 | Cite as

On the growth mechanism of ZnO nano structure via aqueous chemical synthesis

  • Ankur Gupta
  • Shantanu Bhattacharya
Original Article
  • 8 Downloads

Abstract

Because of multi-functional properties with high specific surface area, ZnO nano architectures are finding immense utilities in variegated applications viz., sensing, diagnostics, etc. To investigate the concept behind the long and vertical growth of the ZnO nano structures, understanding of surface energy, molecular interaction, their reactions at certain physical environment such as temperature and pressure, etc., is utmost important. The high aspect hexagonal crystal growth inside aqueous chemical solution is rarely explained by researchers. This crystal growth mechanism involves variety of variables such as solute concentrations, seed orientation, reaction rate, other impurities, etc. Based on the experimental observation herein, a theoretical modeling for ZnO crystal vertical growth is proposed and its epitaxial growth rate along with side length and with function of time is investigated.

Keywords

ZnO Nanowire Theoretical modeling Chemical synthesis 

Notes

References

  1. Agrawal R, Paci JT, Espinosa HD (2010) Large-scale density functional theory investigation of failure modes in ZnO nanowires. Nano Lett 10(9):3432–3438CrossRefGoogle Scholar
  2. Babu JB, Yoh K (2011) Growth rate enhancement of InAs nanowire by molecular beam epitaxy. J Cryst Growth 322(1):10–14CrossRefGoogle Scholar
  3. Chen SW, Wu JM (2011) Nucleation mechanisms and their influences on characteristics of ZnO nanorod arrays prepared by a hydrothermal method. Acta Mater 59(2):841–847CrossRefGoogle Scholar
  4. Eaglesham DJ, Cerullo M (1990) Dislocation-free stranski-krastanow growth of Ge on Si (100). Phys Rev Lett 64(16):1943CrossRefGoogle Scholar
  5. Fröberg LE, Seifert W, Johansson J (2007) Diameter-dependent growth rate of InAs nanowires. Phys Rev B 76(15):153401CrossRefGoogle Scholar
  6. Greene LE, Yuhas BD, Law M, Zitoun D, Yang P (2006) Solution-grown zinc oxide nanowires. Inorg Chem 45(19):7535–7543CrossRefGoogle Scholar
  7. Gupta A, Pandey SS, Bhattacharya S (2013) High aspect ZnO nanostructures based hydrogen sensing. In: Bhardwaj S, Shekhawat MS, Suthar B (eds) AIP conference proceedings, vol. 1536, No. 1, pp 291–292Google Scholar
  8. Gupta A, Pandey SS, Nayak M, Maity A, Majumder SB, Bhattacharya S (2014) Hydrogen sensing based on nanoporous silica-embedded ultra dense ZnO nanobundles. RSC Adv 4(15):7476–7482CrossRefGoogle Scholar
  9. Gupta A, Mondal K, Sharma A, Bhattacharya S (2015a) Superhydrophobic polymethylsilsesquioxane pinned one dimensional ZnO nanostructures for water remediation through photo-catalysis. RSC Adv 5(57):45897–45907CrossRefGoogle Scholar
  10. Gupta A, Saurav JR, Bhattacharya S (2015b) Solar light based degradation of organic pollutants using ZnO nanobrushes for water filtration. RSC Adv 5(87):71472–71481CrossRefGoogle Scholar
  11. Johansson JC, Patrik T, Svensson T, Mårtensson L, Samuelson, Seifert W (2005) Mass transport model for semiconductor nanowire growth. J Phys Chem B 109(28):13567–13571CrossRefGoogle Scholar
  12. Kabbara H, Ghanbaja J, Noël C, Belmonte T (2017) Synthesis of Cu@ZnO core–shell nanoparticles by spark discharges in liquid nitrogen. Nanostruct Nanoobjects 10:22–29Google Scholar
  13. Kleinwechter H, Janzen C, Knipping J, Wiggers H, Roth P (2002) Formation and properties of ZnO nano-particles from gas phase synthesis processes. J Mater Sci 37(20):4349–4360CrossRefGoogle Scholar
  14. Kumar V, Kumari S, Kumar P, Kar M, Kumar L (2015) Structural analysis by Rietveld method and its correlation with optical properties of nanocrystalline zinc oxide. Adv Mater Lett 6:139– 47CrossRefGoogle Scholar
  15. Laue MV (1943) Der wulffsche satz für die gleidigewichtsform von kristallen. Zeitschrift für Kristallographie—Crystalline Materials 105(1–6):124–133Google Scholar
  16. Le Goues FK, Reuter MC, Tersoff J, Hammar M, Tromp RM (1994) Cyclic growth of strain-relaxed islands. Phys Rev Lett 73(2):300CrossRefGoogle Scholar
  17. Li Q, Kumar V, Li Y, Zhang H, Marks TJ, Chang RP (2005) Fabrication of ZnO nanorods and nanotubes in aqueous solutions. Chem Mater 17(5):1001–1006CrossRefGoogle Scholar
  18. Oh S, Jung M, Koo J, Cho Y, Choi S, Yi S, Kil G, Chang J (2010) The mechanism of ZnO nanorod growth by vapor phase transportation. Phys E 42(9):2285–2288CrossRefGoogle Scholar
  19. Romero M, Henríquez R, Dalchiele EA (2016) Electrochemical deposition of ZnO nanorod arrays onto a ZnO seed layer: nucleation and growth mechanism. Int J Electrochem Sci 11(10):8588–8598CrossRefGoogle Scholar
  20. Saunders RB, McGlynn E, Henry MO (2011) Theoretical analysis of nucleation and growth of ZnO nanostructures in vapor phase transport growth. Cryst Growth Des 11(10):4581–4587CrossRefGoogle Scholar
  21. Song J, Lim S (2007) Effect of seed layer on the growth of ZnO nanorods. J Phys Chem C 111(2):596–600CrossRefGoogle Scholar
  22. Spencer MJS (2012) Gas sensing applications of 1D-nanostructured zinc oxide: insights from density functional theory calculations. Prog Mater Sci 57(3):437–486CrossRefGoogle Scholar
  23. Spencer BJ, Tersoff J (1997) Equilibrium shapes and properties of epitaxially strained islands. Phys Rev Let 79(24):4858CrossRefGoogle Scholar
  24. Thanh NT, Maclean N, Mahiddine S (2014) Mechanisms of nucleation and growth of nanoparticles in solution. Chem Rev 114(15):7610–7630CrossRefGoogle Scholar
  25. Venables J (2000) Introduction to surface and thin film processes. Cambridge University Press, Cambridge (ISBN 0-521-62460-6)CrossRefGoogle Scholar
  26. Wang H, Xie J, Yan K, Duan M (2011) Growth mechanism of different morphologies of ZnO crystals prepared by hydrothermal method. J Mater Sci Technol 27(2):153–158CrossRefGoogle Scholar
  27. Wessels BW (1997) Morphological stability of strained-layer semiconductors. J Vac Sci Technol B 15(4):1056–1058CrossRefGoogle Scholar
  28. Zhang Y, Ram MK, Elias K, Stefanakos, Goswami DY (2012) Synthesis, characterization, and applications of ZnO nanowires. J Nanomater 2012:20Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Mechanical SciencesIndian Institute of Technology BhubaneswarKhordhaIndia
  2. 2.Department of Mechanical EngineeringIndian Institute of TechnologyKanpurIndia

Personalised recommendations