The mechanism of nickel ferrite formation by glow discharge effect

  • L. A. Frolova
Original Article


The influence of various factors on the formation of nickel ferrite by the glow discharge effect has been studied. The ferritization process in the system FeSO4–NiSO4–NaOH–H2O has been studied by the methods of potentiometric titration, measurement of electrical conductivity, residual concentrations and apparent sediment volume. It has been established that the process proceeds in a multistage fashion at pH 11–12 with the formation of polyhydroxo complexes, an intermediate compound and the ferrite formation by its oxidation with active radicals.


Ferritization Nickel ferrite Glow discharge 



  1. Bruggeman P, Leys C (2009) Non-thermal plasmas in and in contact with liquids. J Phys D Appl Phys 42(5):053001CrossRefGoogle Scholar
  2. Chao X, Longjun X, Yongjun Y, Xiangyang L, Shuyun W (2015) Influence of pH on properties of Mn–Zn ferrites synthesized from low-grade manganese ore. Chin J Geochem 34(2):219–223CrossRefGoogle Scholar
  3. Costa RC, Lelis MFF, Oliveira LCA, Fabris JD, Ardisson JD, Rios RRVA, Lago RM (2006) Novel active heterogeneous Fenton system based on Fe3–xMxO4 (Fe Co, Mn, Ni): the role of M2+ species on the reactivity towards H2O2 reactions. J Hazard Mater 129(1–3):171–178CrossRefGoogle Scholar
  4. Dar MA, Shah J, Siddiqui WA, Kotnala RK (2014) Study of structure and magnetic properties of Ni–Zn ferrite nano-particles synthesized via co-precipitation and reverse micro-emulsion technique. Appl Nanosci 4(6):675–682CrossRefGoogle Scholar
  5. Diodati S, Pandolfo L, Caneschi A, Gialanella S, Gross S (2014) Green and low temperature synthesis of nanocrystalline transition metal ferrites by simple wet chemistry routes. Nano Res 7(7):1027–1042CrossRefGoogle Scholar
  6. Frolova LA, Derhachov MP (2017) The effect of contact non-equilibrium plasma on structural and magnetic properties of MnXFe3−XO4 Spinels. Nanoscale Res Lett 12(1):505CrossRefGoogle Scholar
  7. Frolova LA, Pivovarov AA (2015) Investigation of conditions for ultrasound-assisted preparation of nickel ferrite. High Energ Chem 49(1):10–15CrossRefGoogle Scholar
  8. Frolova LA, Pivovarov AA, Baskevich AS, Kushnerev AI (2014) Structure and properties of nickel ferrites produced by glow discharge in the Fe2+–Ni2+–SO4 2−–OH system. Russ J Appl Chem 87(8):1054–1059CrossRefGoogle Scholar
  9. Galindo R, Menendez N, Crespo P, Velasco V, Bomati-Miguel O, Díaz-Fernández D, Herrasti P (2014) Comparison of different methodologies for obtaining nickel nanoferrites. J Magn Magn Mater 361:118–125CrossRefGoogle Scholar
  10. Hong D, Yamada Y, Nagatomi T, Takai Y, Fukuzumi S (2012) Catalysis of nickel ferrite for photocatalytic water oxidation using [Ru (bpy) 3]2+ and S2O8 2−. J Am Chem Soc 134(48):19572–19575CrossRefGoogle Scholar
  11. Hyeon T (2003) Chemical synthesis of magnetic nanoparticles. Chem Comm 8:927–934CrossRefGoogle Scholar
  12. Kamalvand P, Kumar Pandey G, Kumar Meshram M, Mallahzadeh A (2015) A single sided dual-antenna structure for UHF RFID tag applications. Int J Rf Microw C E 25(7):619–628CrossRefGoogle Scholar
  13. Klas S, Dubowski Y, Pritosiwi G, Gerth J, Calmano W, Lahav O (2011) Extent and mechanism of metal ion incorporation into precipitated ferrites. J Colloid Interface Sci 358(1):129–135CrossRefGoogle Scholar
  14. Krehula S, Popović S, Musić S (2002) Synthesis of acicular α-FeOOH particles at a very high pH. Mater Lett 54(2):108–113CrossRefGoogle Scholar
  15. Kurian M, Nair DS (2016) Effect of preparation conditions on nickel zinc ferrite nanoparticles: a comparison between sol–gel auto combustion and co-precipitation methods. J Saudi Chem Soc 20:517–522CrossRefGoogle Scholar
  16. Kuz’micheva LA, Titova YV, Maksimov AI, Vashurin AS, Pukhovskaya SG (2013) Effect of the cathode material on the accumulation of hydrogen peroxide in a plasma-solution system. Surf Eng Appl Electrochem 49(6):485–487CrossRefGoogle Scholar
  17. Kuz’michyova LA, Titova YV, Maksimov AI (2011) Yields of hydroxyl radicals and hydrogen peroxide in a glow discharge system with a liquid cathode. Surf Eng Appl Electrochem 47(6):517–519CrossRefGoogle Scholar
  18. Maaz K, Karim S, Mumtaz A, Hasanain SK, Liu J, Duan JL (2009) Synthesis and magnetic characterization of nickel ferrite nanoparticles prepared by co-precipitation route. J Magn Magn Mater 321(12):1838–1842CrossRefGoogle Scholar
  19. Milichko VA, Nechaev AI, Valtsifer VA, Strelnikov VN, Kulchin YN, Dzyuba VP (2013) Photo-induced electric polarizability of Fe3O4 nanoparticles in weak optical fields. Nanoscale Res Lett 8(1):317–324CrossRefGoogle Scholar
  20. Morgan B, Lahav O (2007) The effect of pH on the kinetics of spontaneous Fe(II) oxidation by O2 in aqueous solution–basic principles and a simple heuristic description. Chemosphere 68(11):2080–2084CrossRefGoogle Scholar
  21. Nejati K, Zabihi R (2012) Preparation and magnetic properties of nano size nickel ferrite particles using hydrothermal method. Chem Cent J 6(1):23CrossRefGoogle Scholar
  22. Pardavi-Horvath M (2000) Microwave applications of soft ferrites. J Magn Magn Mater 215:171–183CrossRefGoogle Scholar
  23. Peelamedu R, Grimes C, Agrawal D, Roy R, Yadoji P (2003) Ultralow dielectric constant nickel–zinc ferrites using microwave sintering. J Mater Res 18(10):2292–2295CrossRefGoogle Scholar
  24. Rawat J, Rana S, Srivastava R, Misra RDK (2007) Antimicrobial activity of composite nanoparticles consisting of titania photocatalytic shell and nickel ferrite magnetic core. Mater Sci Eng, C 27(3):540–545CrossRefGoogle Scholar
  25. Reddy CG, Manorama SV, Rao VJ (2000) Preparation and characterization of ferrites as gas sensor materials. J Mater Sci Lett 19(9):775–778CrossRefGoogle Scholar
  26. Rybkin VV, Shutov DA (2017) Atmospheric-pressure electric discharge as an instrument of chemical activation of water solutions. Plasma Phys Rep 43(11):1089–1113CrossRefGoogle Scholar
  27. Sinfrônio FSM, Santana PYC, Coelho SFN, Silva FC, de Menezes AS, Sharma SK (2017) Magnetic and structural properties of cobalt-and zinc-substituted nickel ferrite synthesized by microwave-assisted hydrothermal method. J Electron Mater 46(2):1145–1154CrossRefGoogle Scholar
  28. Tolchev AV, Kleschov DG, Bagautdinova RR, Pervushin VY (2002) Temperature and pH effect on composition of a precipitate formed in FeSO4–H2O–H+/OH–H2O2 system. Mater Sci Technol phys 74(3):336–339Google Scholar
  29. Tyagi AK, Ahlawat DS (2017) Influence of pH variation on structural and magnetic properties of Ni-Zn ferrite nanoparticles synthesized by auto combustion method. Orient J Chem 33(1):296–303CrossRefGoogle Scholar
  30. Uskoković V, Drofenik M (2005) A mechanism for the formation of nanostructured NiZn ferrites via a microemulsion-assisted precipitation method. Colloids Surf A Physicochem Eng Aspects 266(1-3):168–174CrossRefGoogle Scholar
  31. Vanetsev AS, Ivanov VK, Tret’yakov YD (2002) Microwave synthesis of lithium, copper, cobalt, and nickel ferrites. Dokl Chem 387(4–6):332–334CrossRefGoogle Scholar
  32. Vestal CR, Zhang ZJ (2003) Synthesis and magnetic characterization of Mn and Co spinel ferrite-silica nanoparticles with tunable magnetic core. Nano Lett 3(12):1739–1743CrossRefGoogle Scholar
  33. Wu KH, Yu CH, Chang YC, Horng DN (2004) Effect of pH on the formation and combustion process of sol–gel auto-combustion derived NiZn ferrite/SiO2 composites. Solid State Chem 177(11):4119–4125CrossRefGoogle Scholar
  34. Xiao T, Tang Y, Jia Z, Li D, Hu X, Li B, Luo L (2009) Self-assembled 3D flower-like Ni2+–Fe3+ layered double hydroxides and their calcined products. Nanotechnology 20(47):475603CrossRefGoogle Scholar
  35. Yazdani F, Seddigh M (2016) Magnetite nanoparticles synthesized by co-precipitation method: the effects of various iron anions on specifications. Mater Chem Phys 184:318–323CrossRefGoogle Scholar
  36. Zhang S, Zhao D (eds) (2017) Advances in magnetic materials: processing, properties, and performance. CRC Press, Boca RotonGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Ukrainian State University of Chemical EngineeringDniproUkraine

Personalised recommendations