Skip to main content
Log in

The mechanism of nickel ferrite formation by glow discharge effect

  • Original Article
  • Published:
Applied Nanoscience Aims and scope Submit manuscript

Abstract

The influence of various factors on the formation of nickel ferrite by the glow discharge effect has been studied. The ferritization process in the system FeSO4–NiSO4–NaOH–H2O has been studied by the methods of potentiometric titration, measurement of electrical conductivity, residual concentrations and apparent sediment volume. It has been established that the process proceeds in a multistage fashion at pH 11–12 with the formation of polyhydroxo complexes, an intermediate compound and the ferrite formation by its oxidation with active radicals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bruggeman P, Leys C (2009) Non-thermal plasmas in and in contact with liquids. J Phys D Appl Phys 42(5):053001

    Article  Google Scholar 

  • Chao X, Longjun X, Yongjun Y, Xiangyang L, Shuyun W (2015) Influence of pH on properties of Mn–Zn ferrites synthesized from low-grade manganese ore. Chin J Geochem 34(2):219–223

    Article  Google Scholar 

  • Costa RC, Lelis MFF, Oliveira LCA, Fabris JD, Ardisson JD, Rios RRVA, Lago RM (2006) Novel active heterogeneous Fenton system based on Fe3–xMxO4 (Fe Co, Mn, Ni): the role of M2+ species on the reactivity towards H2O2 reactions. J Hazard Mater 129(1–3):171–178

    Article  Google Scholar 

  • Dar MA, Shah J, Siddiqui WA, Kotnala RK (2014) Study of structure and magnetic properties of Ni–Zn ferrite nano-particles synthesized via co-precipitation and reverse micro-emulsion technique. Appl Nanosci 4(6):675–682

    Article  Google Scholar 

  • Diodati S, Pandolfo L, Caneschi A, Gialanella S, Gross S (2014) Green and low temperature synthesis of nanocrystalline transition metal ferrites by simple wet chemistry routes. Nano Res 7(7):1027–1042

    Article  Google Scholar 

  • Frolova LA, Derhachov MP (2017) The effect of contact non-equilibrium plasma on structural and magnetic properties of MnXFe3−XO4 Spinels. Nanoscale Res Lett 12(1):505

    Article  Google Scholar 

  • Frolova LA, Pivovarov AA (2015) Investigation of conditions for ultrasound-assisted preparation of nickel ferrite. High Energ Chem 49(1):10–15

    Article  Google Scholar 

  • Frolova LA, Pivovarov AA, Baskevich AS, Kushnerev AI (2014) Structure and properties of nickel ferrites produced by glow discharge in the Fe2+–Ni2+–SO4 2−–OH system. Russ J Appl Chem 87(8):1054–1059

    Article  Google Scholar 

  • Galindo R, Menendez N, Crespo P, Velasco V, Bomati-Miguel O, Díaz-Fernández D, Herrasti P (2014) Comparison of different methodologies for obtaining nickel nanoferrites. J Magn Magn Mater 361:118–125

    Article  Google Scholar 

  • Hong D, Yamada Y, Nagatomi T, Takai Y, Fukuzumi S (2012) Catalysis of nickel ferrite for photocatalytic water oxidation using [Ru (bpy) 3]2+ and S2O8 2−. J Am Chem Soc 134(48):19572–19575

    Article  Google Scholar 

  • Hyeon T (2003) Chemical synthesis of magnetic nanoparticles. Chem Comm 8:927–934

    Article  Google Scholar 

  • Kamalvand P, Kumar Pandey G, Kumar Meshram M, Mallahzadeh A (2015) A single sided dual-antenna structure for UHF RFID tag applications. Int J Rf Microw C E 25(7):619–628

    Article  Google Scholar 

  • Klas S, Dubowski Y, Pritosiwi G, Gerth J, Calmano W, Lahav O (2011) Extent and mechanism of metal ion incorporation into precipitated ferrites. J Colloid Interface Sci 358(1):129–135

    Article  Google Scholar 

  • Krehula S, Popović S, Musić S (2002) Synthesis of acicular α-FeOOH particles at a very high pH. Mater Lett 54(2):108–113

    Article  Google Scholar 

  • Kurian M, Nair DS (2016) Effect of preparation conditions on nickel zinc ferrite nanoparticles: a comparison between sol–gel auto combustion and co-precipitation methods. J Saudi Chem Soc 20:517–522

    Article  Google Scholar 

  • Kuz’micheva LA, Titova YV, Maksimov AI, Vashurin AS, Pukhovskaya SG (2013) Effect of the cathode material on the accumulation of hydrogen peroxide in a plasma-solution system. Surf Eng Appl Electrochem 49(6):485–487

    Article  Google Scholar 

  • Kuz’michyova LA, Titova YV, Maksimov AI (2011) Yields of hydroxyl radicals and hydrogen peroxide in a glow discharge system with a liquid cathode. Surf Eng Appl Electrochem 47(6):517–519

    Article  Google Scholar 

  • Maaz K, Karim S, Mumtaz A, Hasanain SK, Liu J, Duan JL (2009) Synthesis and magnetic characterization of nickel ferrite nanoparticles prepared by co-precipitation route. J Magn Magn Mater 321(12):1838–1842

    Article  Google Scholar 

  • Milichko VA, Nechaev AI, Valtsifer VA, Strelnikov VN, Kulchin YN, Dzyuba VP (2013) Photo-induced electric polarizability of Fe3O4 nanoparticles in weak optical fields. Nanoscale Res Lett 8(1):317–324

    Article  Google Scholar 

  • Morgan B, Lahav O (2007) The effect of pH on the kinetics of spontaneous Fe(II) oxidation by O2 in aqueous solution–basic principles and a simple heuristic description. Chemosphere 68(11):2080–2084

    Article  Google Scholar 

  • Nejati K, Zabihi R (2012) Preparation and magnetic properties of nano size nickel ferrite particles using hydrothermal method. Chem Cent J 6(1):23

    Article  Google Scholar 

  • Pardavi-Horvath M (2000) Microwave applications of soft ferrites. J Magn Magn Mater 215:171–183

    Article  Google Scholar 

  • Peelamedu R, Grimes C, Agrawal D, Roy R, Yadoji P (2003) Ultralow dielectric constant nickel–zinc ferrites using microwave sintering. J Mater Res 18(10):2292–2295

    Article  Google Scholar 

  • Rawat J, Rana S, Srivastava R, Misra RDK (2007) Antimicrobial activity of composite nanoparticles consisting of titania photocatalytic shell and nickel ferrite magnetic core. Mater Sci Eng, C 27(3):540–545

    Article  Google Scholar 

  • Reddy CG, Manorama SV, Rao VJ (2000) Preparation and characterization of ferrites as gas sensor materials. J Mater Sci Lett 19(9):775–778

    Article  Google Scholar 

  • Rybkin VV, Shutov DA (2017) Atmospheric-pressure electric discharge as an instrument of chemical activation of water solutions. Plasma Phys Rep 43(11):1089–1113

    Article  Google Scholar 

  • Sinfrônio FSM, Santana PYC, Coelho SFN, Silva FC, de Menezes AS, Sharma SK (2017) Magnetic and structural properties of cobalt-and zinc-substituted nickel ferrite synthesized by microwave-assisted hydrothermal method. J Electron Mater 46(2):1145–1154

    Article  Google Scholar 

  • Tolchev AV, Kleschov DG, Bagautdinova RR, Pervushin VY (2002) Temperature and pH effect on composition of a precipitate formed in FeSO4–H2O–H+/OH–H2O2 system. Mater Sci Technol phys 74(3):336–339

    Google Scholar 

  • Tyagi AK, Ahlawat DS (2017) Influence of pH variation on structural and magnetic properties of Ni-Zn ferrite nanoparticles synthesized by auto combustion method. Orient J Chem 33(1):296–303

    Article  Google Scholar 

  • Uskoković V, Drofenik M (2005) A mechanism for the formation of nanostructured NiZn ferrites via a microemulsion-assisted precipitation method. Colloids Surf A Physicochem Eng Aspects 266(1-3):168–174

    Article  Google Scholar 

  • Vanetsev AS, Ivanov VK, Tret’yakov YD (2002) Microwave synthesis of lithium, copper, cobalt, and nickel ferrites. Dokl Chem 387(4–6):332–334

    Article  Google Scholar 

  • Vestal CR, Zhang ZJ (2003) Synthesis and magnetic characterization of Mn and Co spinel ferrite-silica nanoparticles with tunable magnetic core. Nano Lett 3(12):1739–1743

    Article  Google Scholar 

  • Wu KH, Yu CH, Chang YC, Horng DN (2004) Effect of pH on the formation and combustion process of sol–gel auto-combustion derived NiZn ferrite/SiO2 composites. Solid State Chem 177(11):4119–4125

    Article  Google Scholar 

  • Xiao T, Tang Y, Jia Z, Li D, Hu X, Li B, Luo L (2009) Self-assembled 3D flower-like Ni2+–Fe3+ layered double hydroxides and their calcined products. Nanotechnology 20(47):475603

    Article  Google Scholar 

  • Yazdani F, Seddigh M (2016) Magnetite nanoparticles synthesized by co-precipitation method: the effects of various iron anions on specifications. Mater Chem Phys 184:318–323

    Article  Google Scholar 

  • Zhang S, Zhao D (eds) (2017) Advances in magnetic materials: processing, properties, and performance. CRC Press, Boca Roton

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. A. Frolova.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Frolova, L.A. The mechanism of nickel ferrite formation by glow discharge effect. Appl Nanosci 9, 845–852 (2019). https://doi.org/10.1007/s13204-018-0767-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13204-018-0767-z

Keywords

Navigation