Advertisement

Luminescence studies of HgCdTe- and InAsSb-based quantum-well structures

  • I. I. Izhnin
  • A. I. Izhnin
  • O. I. Fitsych
  • A. V. Voitsekhovskii
  • D. I. Gorn
  • A. A. Semakova
  • N. L. Bazhenov
  • K. D. Mynbaev
  • G. G. Zegrya
Original Article
  • 25 Downloads

Abstract

Results of photoluminescence studies of single-quantum-well HgCdTe-based structures and electroluminescence studies of multiple-quantum-well InAsSb-based structures are reported. HgCdTe structures were grown with molecular beam epitaxy on GaAs substrates. InAsSb-based structures were grown with metal-organic chemical vapor deposition on InAs substrates. The common feature of luminescence spectra of all the structures was the presence of peaks with the energy much larger than that of calculated optical transitions between the first quantization levels for electrons and heavy holes. Possibility of observation of optical transitions between the quantization levels of electrons and first and/or second heavy and light hole levels is discussed in the paper in relation to the specifics of the electronic structure of the materials under consideration.

Keywords

Quantum wells Optical transitions Luminescence Narrow-bandgap semiconductors 

Notes

Acknowledgements

The authors should like to thank Drs. N.N. Mikhailov, V.S. Varavin and S.A. Dvoretsky from the Institute of Semiconductor Physics for supplying HgCdTe-based structures, and Drs. S.S. Kizhaev, A.V. Chernyaev and N.D. Stoyanov from Microsensor Technology, LLC, for supplying InAsSb-based structures for this research.

References

  1. Alhodaib A, Noori Y, Carrington PJ, Sanchez AM, Thompson MD, Young RJ, Krier A, Marshall A (2018) Room temperature mid-infrared emission from faceted InAsSb multi quantum wells embedded in InAs nanowires. Nano Lett 18:235–240CrossRefGoogle Scholar
  2. Bazhenov NL, Shilyaev AV, Mynbaev KD, Zegrya GG (2012) Optical transitions in CdxHg1 − xTe-based quantum wells and their analysis with account for the actual band structure of the material. Semiconductors 46:773–778CrossRefGoogle Scholar
  3. Becker CR, Latussek V, Pfeuffer-Jeschke A, Landwehr G, Molenkamp LW (2000) Band structure and its temperature dependence for type-III HgTe/Hg1 − xCdxTe superlattices and their semimetal constituent. Phys Rev B 62:10353–10363CrossRefGoogle Scholar
  4. Carrington PJ, Zhuang Q, Yin M, Krier A (2009) Temperature dependence of mid-infrared electroluminescence in type II InAsSb/InAs multi-quantum well light-emitting diodes. Semicond Sci Technol 24:075001CrossRefGoogle Scholar
  5. Danilov LV, Zegrya GG (2008) Threshold characteristics of an IR laser based on deep InAsSb/AlSb quantum well. Semiconductors 42:557–562CrossRefGoogle Scholar
  6. Grein CH, Flatte ME, Olesberg JT, Anson SA, Zhang L, Boggess TF (2002) Auger recombination in narrow-gap semiconductor superlattices incorporating antimony. J Appl Phys 92:7311–7316CrossRefGoogle Scholar
  7. Jiang Y, Teich MC, Wang WI (1992) Carrier lifetimes and threshold currents in HgCdTe double heterostructures and multiquantum-well lasers. J Appl Phys 69:6869–6875CrossRefGoogle Scholar
  8. Jung D, Bank S, Lee ML, Wasserman D (2017) Next-generation mid-infrared sources. J Opt 19:123001CrossRefGoogle Scholar
  9. Keen JA, Lane D, Kesaria M, Marshall ARJ, Krier A (2018) InAs/InAsSb type-II strained-layer superlattices for mid-infrared LEDs. J Phys D Appl Phys 51:075103CrossRefGoogle Scholar
  10. Liu PW, Tsai G, Lin HH, Zhuang QD, Stone M (2006) Photoluminescence and bowing parameters of InAsSb/InAs multiple quantum wells grown by molecular beam epitaxy. Appl Phys Lett 89:20115Google Scholar
  11. Mikhailov NN, Smirnov RN, Dvoretsky SA, Sidorov YuG, Shvets VA, Spesivtsev EV, Rykhlitski SV (2006) Growth of Hg1 − xCdxTe nanostructures by molecular beam epitaxy with ellipsometric control. Int J Nanotechnol 3:120–130CrossRefGoogle Scholar
  12. Mynbaev KD, Shilyaev AV, Semakova AA, Bykhanova EV, Bazhenov NL (2017a) Luminescence of II–VI and III–V nanostructures. Opto-Electron Rev 25:209–214CrossRefGoogle Scholar
  13. Mynbaev KD, Bazhenov NL, Semakova AA, Chernyaev AV, Kizhaev SS, Stoyanov ND, Bougrov VE, Lipsanen H, Salikhov KhM (2017b) Spontaneous and stimulated emission in InAsSb-based LED heterostructures. Infr Phys Technol 85:246–250CrossRefGoogle Scholar
  14. Ning ZD, Liu SM, Luo S, Ren F, Wang F, Yang T, Liu FQ, Wang ZG, Zhao LC (2016) Growth and characterization of InAs/InAsSb superlattices by metal organic chemical vapor deposition for mid-wavelength infrared photodetectors. Mater Lett 164:213–216CrossRefGoogle Scholar
  15. Ruffenach S, Kadykov A, Coquillat D, But D, Krishtopenko SS, Consejo C, Knap W, Teppe F, Rumyantsev VV, Fadeev MA, Gavrilenko VI, Morozov SV, Torres J, Winnerl S, Helm M, Mikhailov NN, Dvoretskii SA (2017) HgCdTe-based heterostructures for terahertz photonics. APL Mater 5:035503CrossRefGoogle Scholar
  16. Sopanen M, Koljonen T, Lipsanen H, Tuomi T (1994) Growth of GaInAsSb using tertiary butylarsine as arsenic source. J Cryst Growth 145:492–497CrossRefGoogle Scholar
  17. Steenbergen EH, Massengale JA, Ariyawansa G, Zhang YH (2016) Evidence of carrier localization in photoluminescence spectroscopy studies of mid-wavelength infrared InAs/InAs1 − xSbx type-II superlattices. J Lumin 178:451–456CrossRefGoogle Scholar
  18. Voitsekhovskii AV, Gorn DI (2015) Photoluminescence spectra of HgCdTe structures with multiple quantum wells. Russ Phys J 57:1412–1422CrossRefGoogle Scholar
  19. Voitsekhovskii AV, Gorn DI, Izhnin II, Izhnin AI, Goldin VD, Mikhailov NN, Dvoretskii SA, Sidorov YuG, Yakushev MV, Varavin VS (2013) Analysis of the photoluminescence spectra of CdxHg1 − xTe heteroepitaxial structures with potential and quantum wells grown by molecular beam epitaxy. Russ Phys J 55:910–916CrossRefGoogle Scholar
  20. Voitsekhovskii AV, Gorn DI, Izhnin II, Izhnin AI (2016) Photoluminescence spectra of HgCdTe structures with single quantum wells. J Opt Technol 83:206–212CrossRefGoogle Scholar
  21. Vurgaftman I, Meyer JR, Ram-Mohan LR (2001) Band parameters for III–V compound semiconductors and their alloys. J Appl Phys 89:5815–5875CrossRefGoogle Scholar
  22. Zegrya GG, Andreev AD (1996) Theory of the recombination of non-equilibrium carriers in type-II heterostructures. J Exp Theor Phys 82:328–343Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Scientific Research Company “Carat”LvivUkraine
  2. 2.National Research Tomsk State UniversityTomskRussia
  3. 3.Ioffe InstituteSaint-PetersburgRussia
  4. 4.ITMO UniversitySaint-PetersburgRussia

Personalised recommendations