New insights into fungal diversity associated with Megaplatypus mutatus: gut mycobiota

Abstract

The ambrosial forest pest Megaplatypus mutatus causes high economic losses in Argentina and has been classified as an emerging pest in Europe. The high diversity of susceptible tree-species (native and non-native) and its wide geographical distribution turn this ambrosial beetle into a serious threat to forest plantations. This work aimed to characterise the fungal communities associated with M. mutatus` gut, compare the current results with previous culture-dependent and independent datasets and test the specificity of the fungal communities among adults, larvae and host-plants. A total of 2200 fungal strains were isolated by culture method from Males, Females and Larvae from Populus deltoides, grouping them into eleven fungal taxa. Additionally, the larval gut was studied by culture-independent method (454-pyrosequencing) analysing P. deltoides and Casuarina cunninghamiana. The Principal Component Analyses showed a separation between fungal species within adults and larvae, strongly suggesting that males and Graphium basitruncatum association would be even more specific than previously reported. The use of complementary culture-methods, integrated into different scales of study, reflected an important biological complexity in the studied interaction, showing that the specificity in the Fungi-M. mutatus association is given by key-fungal members such as Fusarium solani species complex, Candida insectalens, G. basitruncatum and Raffaelea spp. The multitrophic interactions between M. mutatus and gut-associated fungi were assessed for the first time. These results complement the data from culture methods previously reported, thus improving the accuracy and understanding of the fungal assemblages associated with M. mutatus.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3

References

  1. Adams A, Currie C, Cardoza Y, Klepzig K, Raffa K (2009) Effects of symbiotic bacteria and tree chemistry on the growth and reproduction of bark beetle fungal symbionts. Can J For Res 39:1133–1147

    Article  Google Scholar 

  2. Akami M et al (2019a) Intestinal bacteria modulate the foraging behavior of the oriental fruit fly Bactrocera dorsalis (Diptera: Tephritidae). PLoS ONE 14:e0210109. https://doi.org/10.1371/journal.pone.0210109

    Article  PubMed  PubMed Central  Google Scholar 

  3. Akami M, Njintang NY, Gbaye OA, Andongma AA, Rashid MA, Niu CY, Nukenine EN (2019b) Gut bacteria of the cowpea beetle mediate its resistance to dichlorvos and susceptibility to Lippia adoensis essential oil. Sci Rep 9:6435. https://doi.org/10.1038/s41598-019-42843-1

    Article  PubMed  PubMed Central  Google Scholar 

  4. Alfaro RI, Humble LM, Gonzalez P, Villaverde R, Allegro G (2007) The threat of the ambrosia beetle Megaplatypus mutatus (Chapuis)(= Platypus mutatus Chapuis) to world poplar resources. Forestry 80:471–479

    Article  Google Scholar 

  5. Allegro G, Della Beffa G (2001) Un nuovo problema entomologico per la pioppicoltura Italiana: Platypus mutatus Chapuis (Coleoptera, Platypodidae) alberi oggi 66:31-34

  6. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410. https://doi.org/10.1016/S0022-2836(05)80360-2

    Article  PubMed  PubMed Central  Google Scholar 

  7. Arimura G, Huber DP, Bohlmann J (2004) Forest tent caterpillars (Malacosoma disstria) induce local and systemic diurnal emissions of terpenoid volatiles in hybrid poplar (Populus trichocarpa× deltoides): cDNA cloning, functional characterization, and patterns of gene expression of (−)-germacrene D synthase, PtdTPS1. Plant J 37:603–616

    Article  Google Scholar 

  8. Artursson V, Finlay RD, Jansson JK (2006) Interactions between arbuscular mycorrhizal fungi and bacteria and their potential for stimulating plant growth. Environ Microbiol 8:1–10

    Article  Google Scholar 

  9. Batra LR (1963) Ecology of ambrosia fungi and their dissemination by beetles. Trans Kans Acad Sci (1903-) 66:213–236

    Article  Google Scholar 

  10. Belhoucine L, Bouhraoua RT, Meijer M, Houbraken J, Harrak MJ, Samson RA, Pujade-Villar J (2011) Mycobiota associated with Platypus cylindrus (Coleoptera: Curculionidae, Platypodidae) in cork oak stands of north West Algeria, Africa. Afr J Microbiol Res 5:4411–4423

    Google Scholar 

  11. Briones-Roblero CI, Rodríguez-Díaz R, Santiago-Cruz JA, Zúñiga G, Rivera-Orduña FN (2017a) Degradation capacities of bacteria and yeasts isolated from the gut of Dendroctonus rhizophagus (Curculionidae: Scolytinae). Folia Microbiol 62:1–9. https://doi.org/10.1007/s12223-016-0469-4

    Article  Google Scholar 

  12. Briones-Roblero CI, Hernández-García JA, Gonzalez-Escobedo R, Soto-Robles LV, Rivera-Orduña FN, Zúñiga G (2017b) Structure and dynamics of the gut bacterial microbiota of the bark beetle, Dendroctonus rhizophagus (Curculionidae: Scolytinae) across their life stages. PLoS One 12:e0175470

    Article  Google Scholar 

  13. Brownlie JC, Johnson KN (2009) Symbiont-mediated protection in insect hosts. Trends Microbiol 17:348–354. https://doi.org/10.1016/j.tim.2009.05.005

    Article  PubMed  Google Scholar 

  14. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Peña AG, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone CA, McDonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Turnbaugh PJ, Walters WA, Widmann J, Yatsunenko T, Zaneveld J, Knight R (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335. https://doi.org/10.1038/nmeth.f.303

    Article  PubMed  PubMed Central  Google Scholar 

  15. Carrillo JD et al (2019) Members of the Euwallacea fornicatus species complex exhibit promiscuous mutualism with ambrosia fungi in Taiwan. Fungal Genet Biol 133:103269

    Article  Google Scholar 

  16. Ceriani-Nakamurakare E, Slodowicz M, Gonzalez-Audino P, Dolinko A, Carmarán C (2016) Mycobiota associated with the ambrosia beetle Megaplatypus mutatus: threat to poplar plantations. Forestry 89:191–200

    Article  Google Scholar 

  17. Ceriani-Nakamurakare E, Slodowicz M, Carmaran C, Gonzalez-Audino P (2017) Development of natural waxes dispensers for pheromones and use in mating disruption of the ambrosia beetle Megaplatypus mutatus in poplar (Populus spp.) plantations. Agrofor Syst 91:415–421

    Article  Google Scholar 

  18. Ceriani-Nakamurakare E, Ramos S, Robles CA, Novas MV, DJonsiles MF, Gonzalez-Audino P, Carmarán C (2018) Metagenomic approach of associated fungi with Megaplatypus mutatus (Coleoptera: Platypodinae). Silva Fenn 52

  19. Coleman JJ, Rounsley SD, Rodriguez-Carres M, Kuo A, Wasmann CC, Grimwood J, Schmutz J, Taga M, White GJ, Zhou S, Schwartz DC, Freitag M, Ma LJ, Danchin EGJ, Henrissat B, Coutinho PM, Nelson DR, Straney D, Napoli CA, Barker BM, Gribskov M, Rep M, Kroken S, Molnár I, Rensing C, Kennell JC, Zamora J, Farman ML, Selker EU, Salamov A, Shapiro H, Pangilinan J, Lindquist E, Lamers C, Grigoriev IV, Geiser DM, Covert SF, Temporini E, VanEtten HD (2009) The genome of Nectria haematococca: contribution of supernumerary chromosomes to gene expansion. PLoS Genet 5:e1000618. https://doi.org/10.1371/journal.pgen.1000618

    Article  PubMed  PubMed Central  Google Scholar 

  20. Colwell R (2013) Estimates: Statistical Estimation of Species Richness and Shared Species from Samples (Version 9.1.0) [Software] Storrs: http://viceroy.eeb.uconn.edu/estimates/

  21. Comisión Nacional del Álamo de Argentina (2016) Informe Nacional período 2012-2015. http://www.fao.org/forestry/ipc2016/91148/en/

  22. Di Rienzo J (2017) Di Rienzo J (2017) InfoStat versión 2017. Grupo InfoStat, FCA, Universidad Nacional de Córdoba, Argentina. http://www.infostat.com.ar

  23. DiGuistini S et al (2011) Genome and transcriptome analyses of the mountain pine beetle-fungal symbiont Grosmannia clavigera, a lodgepole pine pathogen. Proc Natl Acad Sci 108:2504–2509. https://doi.org/10.1073/pnas.1011289108

    Article  PubMed  Google Scholar 

  24. Endoh R, Suzuki M, Okada G, Takeuchi Y, Futai K (2011) Fungus symbionts colonizing the galleries of the ambrosia beetle Platypus quercivorus. Microb Ecol 62:106–120. https://doi.org/10.1007/s00248-011-9838-3

    Article  PubMed  Google Scholar 

  25. Geib SM, Scully ED, Jimenez-Gasco MM, Carlson JE, Tien M, Hoover K (2012) Phylogenetic analysis of Fusarium solani associated with the Asian longhorned beetle, Anoplophora glabripennis. Insects 3:141–160. https://doi.org/10.3390/insects3010141

    Article  PubMed  PubMed Central  Google Scholar 

  26. Giménez R (2009) Megaplatypus mutatus: bases para su manejo integrado Serie técnica Manejo Integrado de Plagas Forestales Cuadernillo:5

  27. Giménez RA, Etiennot AE (2003) Host range of Platypus mutatus (Chapuis, 1865) (Coleoptera: Platypodidae). Entomotropica 18:89–94

    Google Scholar 

  28. Giménez R, Moya M, Michetti M (2003) Control of Megaplatypus mutatus (Coleoptera, Platypodidae) in poplars; pulverization of carbaryl on the bark of the trees of perimetrales rows. IDESIA 21:97–102

  29. González-Audino P, Gatti P, Zerba E (2011) Translucent pheromone traps increase trapping efficiency of ambrosia beetle Megaplatypus mutatus. Crop Prot 30:745–747

    Article  Google Scholar 

  30. Hansen AK, Moran NA (2014) The impact of microbial symbionts on host plant utilization by herbivorous insects. Mol Ecol 23:1473–1496. https://doi.org/10.1111/mec.12421

    Article  PubMed  Google Scholar 

  31. Haridas S et al (2013) The genome and transcriptome of the pine saprophyte Ophiostoma piceae, and a comparison with the bark beetle-associated pine pathogen Grosmannia clavigera. BMC Genomics 14:373. https://doi.org/10.1186/1471-2164-14-373

    Article  PubMed  PubMed Central  Google Scholar 

  32. Henriques J, Inácio ML, Sousa E (2009) Fungos associados ao insecto Platypus cylindrus Fab.(Coleoptera: Platypodidae) em sobreiro. Rev Cien Agra 32:56–66

  33. Hu X, Li M, Chen H (2015) Community structure of gut fungi during different developmental stages of the Chinese white pine beetle (Dendroctonus armandi). Sci Rep 5:8411

    Article  Google Scholar 

  34. Hulcr J, Stelinski LL (2017) The ambrosia symbiosis: from evolutionary ecology to practical management. Ann Rev Entomol:62

  35. Ibarra-Juarez L et al (2018) Impact of rearing conditions on the Ambrosia beetle’s microbiome. Life 8:63

    Article  Google Scholar 

  36. Inácio ML, Henriques J, Lima A, Sousa E (2008) Fungos do género Raffaelea (Ascomycota: Ophiostomatales) associados a Platypus cylindrus (Coleoptera: Platypodidae) em Portugal. Rev Cien Agra 31:96–104

  37. Inward DJ (2019) Three new species of ambrosia beetles established in Great Britain illustrate unresolved risks from imported wood. J Pest Sci:1–10

  38. Kasson MT et al (2013) An inordinate fondness for Fusarium: phylogenetic diversity of fusaria cultivated by ambrosia beetles in the genus Euwallacea on avocado and other plant hosts. Fungal Genet Biol 56:147–157

    Article  Google Scholar 

  39. Kostovcik M, Bateman CC, Kolarik M, Stelinski LL, Jordal BH, Hulcr J (2015) The ambrosia symbiosis is specific in some species and promiscuous in others: evidence from community pyrosequencing. ISME J 9:126

    Article  Google Scholar 

  40. Lewis Z, Lizé A (2015) Insect behaviour and the microbiome. Curr Opin Insect Sci 9:86–90

    Article  Google Scholar 

  41. Li Y et al (2018) Specific and promiscuous ophiostomatalean fungi associated with Platypodinae ambrosia beetles in the southeastern United States. Fungal Ecol 35:42–50

    Article  Google Scholar 

  42. Lozovaya V, Lygin A, Zernova O, Li S, Widholm J, Hartman G (2006) Lignin degradation by Fusarium solani f. sp. glycines. Plant Dis 90:77–82. https://doi.org/10.1094/PD-90-0077

    Article  PubMed  Google Scholar 

  43. Lynch SC et al (2016) Identification, pathogenicity and abundance of Paracremonium pembeum sp. nov. and Graphium euwallaceae sp. nov.—two newly discovered mycangial associates of the polyphagous shot hole borer (Euwallacea sp.) in California. Mycologia 108:313–329

    Article  Google Scholar 

  44. Malacrinò A, Rassati D, Schena L, Mehzabin R, Battisti A, Palmeri V (2017) Fungal communities associated with bark and ambrosia beetles trapped at international harbours. Fungal Ecol 28:44–52

    Article  Google Scholar 

  45. Miller KE, Hopkins K, Inward DJ, Vogler AP (2016) Metabarcoding of fungal communities associated with bark beetles. Ecol Evol 6:1590–1600. https://doi.org/10.1002/ece3.1925

    Article  PubMed  PubMed Central  Google Scholar 

  46. Mohammed WS, Ziganshina EE, Shagimardanova EI, Gogoleva NE, Ziganshin AM (2018) Comparison of intestinal bacterial and fungal communities across various xylophagous beetle larvae (Coleoptera: Cerambycidae). Sci Rep 8:1–12

    Article  Google Scholar 

  47. Morales-Jiménez J, Zúñiga G, Ramírez-Saad HC, Hernández-Rodríguez C (2012) Gut-associated bacteria throughout the life cycle of the bark beetle Dendroctonus rhizophagus Thomas and Bright (Curculionidae: Scolytinae) and their cellulolytic activities. Microb Ecol 64:268–278

    Article  Google Scholar 

  48. Morales-Ramos JA, Rojas MG, Sittertz-Bhatkar H, Saldaña G (2000) Symbiotic relationship between Hypothenemus hampei (Coleoptera: Scolytidae) and Fusarium solani (Moniliales: Tuberculariaceae). Ann Entomol Soc Am 93:541–547

    Article  Google Scholar 

  49. Na F, Carrillo JD, Mayorquin JS, Ndinga-Muniania C, Stajich JE, Stouthamer R, Huang YT, Lin YT, Chen CY, Eskalen A (2018) Two novel fungal symbionts Fusarium kuroshium sp. nov. and Graphium kuroshium sp. nov. of Kuroshio shot hole borer (Euwallacea sp. nr. fornicatus) cause Fusarium dieback on woody host species in California. Plant Dis 102:1154–1164

    Article  Google Scholar 

  50. Nilsson RH, Ryberg M, Abarenkov K, Sjökvist E, Kristiansson E (2009) The ITS region as a target for characterization of fungal communities using emerging sequencing technologies. FEMS Microbiol Lett 296:97–101

    Article  Google Scholar 

  51. Oliver KM, Moran NA, Hunter MS (2005) Variation in resistance to parasitism in aphids is due to symbionts not host genotype. Proc Natl Acad Sci 102:12795–12800

    Article  Google Scholar 

  52. Oliveros JC (2015) Venny. An interactive tool for comparing lists with Venn's diagrams. https://bioinfogp.cnb.csic.es/tools/venny/index.html. Accessed 2019-08

  53. Poinar GO, Vega FE (2018) A mid-cretaceous ambrosia fungus, Paleoambrosia entomophila gen. nov. et sp. nov.(Ascomycota: Ophiostomatales) in Burmese (Myanmar) amber, and evidence for a femoral mycangium. Fungal Biol 122:1159–1162. https://doi.org/10.1016/j.funbio.2018.08.002

    Article  PubMed  Google Scholar 

  54. Popa V, Déziel E, Lavallée R, Bauce E, Guertin C (2012) The complex symbiotic relationships of bark beetles with microorganisms: a potential practical approach for biological control in forestry. Pest Manag Sci 68:963–975. https://doi.org/10.1002/ps.3307

    Article  PubMed  Google Scholar 

  55. Raffa K, Berryman A (1983) The role of host plant resistance in the colonization behavior and ecology of bark beetles (Coleoptera: Scolytidae). Ecol Monogr 53:27–49

    Article  Google Scholar 

  56. Ramsfield TD (2016) Evolving symbioses between insects and fungi that kill trees in Canada: new threats associated with invasive organisms. Canadian Entomol 148:S160–S169

    Article  Google Scholar 

  57. Robert V, Vu D, Amor ABH, van de Wiele N, Brouwer C, Jabas B, Szoke S, Dridi A, Triki M, Daoud S, Chouchen O, Vaas L, de Cock A, Stalpers JA, Stalpers D, Verkley GJM, Groenewald M, dos Santos FB, Stegehuis G, Li W, Wu L, Zhang R, Ma J, Zhou M, Gorjón SP, Eurwilaichitr L, Ingsriswang S, Hansen K, Schoch C, Robbertse B, Irinyi L, Meyer W, Cardinali G, Hawksworth DL, Taylor JW, Crous PW (2013) MycoBank gearing up for new horizons. IMA Fungus 4:371–379. https://doi.org/10.5598/imafungus.2013.04.02.16

    Article  PubMed  PubMed Central  Google Scholar 

  58. Santoro F (1963) Biology and ecology of Platypus sulcatus. Rev Inv For 4:47–79

  59. Schoch C, Seifert K, Huhndorf S, Robert V, Spouge J, Levesque C, Chen W, Fungal Barcoding Consortium (2012) The internal transcribed spacer as a universal DNA barcode marker for Fungi. Proc Natl Acad Sci USA 109:6241–6246

  60. Six DL (2003) Bark beetle-fungus symbioses Insect symbiosis 1:97–114

  61. Slodowicz M, Ceriani-Nakamurakare E, Carmarán C, González-Audino P (2019) Sex pheromone component produced by microbial associates of the forest pest Megaplatypus mutatus. Entomol Exp Appl 167:231–240

  62. Sutherland JB, Pometto AL III, Crawford DL (1983) Lignocellulose degradation by Fusarium species. Can J Bot 61:1194–1198

    Article  Google Scholar 

  63. Van der Walt J (1972) The yeast genus Ambrosiozyma gen. nov.(Ascomycetes). Mycopathol Mycol Appl 46:305–315

    Article  Google Scholar 

  64. Vasanthakumar A, Delalibera I, Handelsman J, Klepzig KD, Schloss PD, Raffa KF (2006) Characterization of Gut-Associated Bacteria in Larvae and Adults of the Southern Pine Beetle, Dendroctonus frontalis Zimmermann. Environ Entomol 35(6):1710–1717

  65. Wang Y, Lim L, DiGuistini S, Robertson G, Bohlmann J, Breuil C (2013) A specialized ABC efflux transporter G c ABC-G 1 confers monoterpene resistance to Grosmannia clavigera, a bark beetle-associated fungal pathogen of pine trees. New Phytol 197:886–898

    Article  Google Scholar 

  66. Yun YH, Suh DY, Yoo HD, Oh MH, Kim SH (2015) Yeast associated with the ambrosia beetle, Platypus koryoensis, the pest of oak trees in Korea. Mycobiology 43:458–466. https://doi.org/10.5941/MYCO.2015.43.4.458

    Article  PubMed  PubMed Central  Google Scholar 

  67. Zehnder G, Kloepper J, Yao C, Wei G (1997) Induction of systemic resistance in cucumber against cucumber beetles (Coleoptera: Chrysomelidae) by plant growth-promoting rhizobacteria. J Econ Entomol 90:391–396

    Article  Google Scholar 

  68. Zhang Z, Jiao S, Li X, Li M (2018) Bacterial and fungal gut communities of Agrilus mali at different developmental stages and fed different diets. Sci Rep 8:1–11

    Article  Google Scholar 

Download references

Acknowledgments

The helpful comments made by the anonymous reviewers are gratefully acknowledged. The authors would like to thank M. Valente for the assistance provided.

Funding

This work was funded by Ministerio de Agricultura, Ganadería y Pesca (MAGyP) of Argentina through SAFO I/103 and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET-PIP 0956).

Author information

Affiliations

Authors

Contributions

ECN and CCC conceived and designed research. ECN conducted the assay and SR provided field samples. CCC and PGA contributed with funding. ECN, PM and CCC analysed data and wrote the manuscript. All authors read and approved the manuscript.

Corresponding author

Correspondence to Esteban Ceriani-Nakamurakare.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Key message

This work characterises, for the first time, the fungal communities associated with M. mutatus´ gut, indicating the most relevant fungal genera and the differences between adults and larvae mycobiota. Our results suggest low host-plant specificity and a key-species in the interaction, Graphium basitruncatum, which is vectorised by males in their cuticle and gut content. Briefly, this research acknowledges the fungal species that ultimately contribute to this forest pest establishment, thus revealing relevant steps for developing an integrated pest control program.

Electronic supplementary material

ESM 1

(PDF 931 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ceriani-Nakamurakare, E., Mc Cargo, P., Gonzalez-Audino, P. et al. New insights into fungal diversity associated with Megaplatypus mutatus: gut mycobiota. Symbiosis (2020). https://doi.org/10.1007/s13199-020-00687-8

Download citation

Keywords

  • Ambrosia
  • Biological interaction
  • Casuarina
  • Fungi
  • Graphium
  • Platypodinae
  • Populus