Differential relationship of fungal endophytic communities and metabolic profiling in the stems and roots of Ephedra sinica based on metagenomics and metabolomics

Abstract

Fungal endophytic communities and metabolite profiles in the aerial and underground parts of plants differ exerting complex influences on each other through mechanisms that largely remain unknown. Ephedra sinica is a model for studying the interactions between endophytic fungi in different plant tissues that exhibit contrasting pharmacological activities. In this study, the endophytic fungal community and metabolites in the stems (Ea) and roots (Eb) of E. sinica were systematically investigated using metagenomic and metabolomic approaches, and their relationships were further analyzed. Results showed that OTU48 and OTU30589 were endophytic fungi shared by Ea and Eb, respectively. The genera of Phyllosticta fungi were specifically and abundantly present in Ea, whereas Talaromyces, Aporospora, and Aspergillus fungi were specific and abundant in Eb. A total of 17 significant differential metabolites were observed between Ea and Eb. Ephedrine and methylephedrine were mainly present in Ea, whereas ephedrannin A and mahuannin A were present in Eb. Nine endophytic fungi significantly (P < 0.05 or 0.01) correlated with several differential metabolites. The results of this study further substantiate the differential formation of secondary metabolites in specific plant tissues.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Abourashed EA, El-Alfy AT, Khan IA, Walker L (2003) Ephedra in perspective-a current review. Phytother Res 17:703–712. https://doi.org/10.1002/ptr.1337

    CAS  Article  PubMed  Google Scholar 

  2. Afzal I, Shinwari ZK, Sikandar S, Shahzad S (2019) Plant beneficial endophytic bacteria: mechanisms, diversity, host range and genetic determinants. Microbiol Res 221:36–49. https://doi.org/10.1016/j.micres.2019.02.001

    CAS  Article  Google Scholar 

  3. Ambrose KV, Koppenhöfer AM, Belanger FC (2014) Horizontal gene transfer of a bacterial insect toxin gene into the Epichloë fungal symbionts of grasses. Sci Rep 4:5562. https://doi.org/10.1038/srep05562

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  4. Ball OJ, Prestidge RA, Sprosen JM (1995) Interrelationships between Acremonium lolii, peramine, and lolitrem B in perennial ryegrass. Appl Environ Microbiol 61:1527–1533

    CAS  Article  Google Scholar 

  5. Blackwell M (2011) The fungi: 1, 2, 3 ... 5.1 million species? Am J Bot 98, 426:–438. https://doi.org/10.3732/ajb.1000298

    Article  Google Scholar 

  6. Committee for the Pharmacopoeia of PR China (2015) Pharmacopoeia of the People’s republic of China. Chinese Medical Science and Technology Press, Beijing, Vol 1:346–347

    Google Scholar 

  7. Cook D, Gardner DR, Pfister JA (2014) Swainsonine-containing plants and their relationship to endophytic fungi. J Agric Food Chem 62:7326–7334. https://doi.org/10.1021/jf501674r

    CAS  Article  PubMed  Google Scholar 

  8. Cui JL, Vijayakumar V, Zhang G (2018a) Partitioning of fungal endophyte assemblages in root-parasitic plant Cynomorium songaricum and its host Nitraria tangutorum. Front Microbiol 9:666. https://doi.org/10.3389/fmicb.2018.00666

    Article  PubMed  PubMed Central  Google Scholar 

  9. Cui JL, Zhang YY, Vijayakumar V, Zhang G, Wang ML, Wang JH (2018b) Secondary metabolite accumulation associates with ecological succession of endophytic fungi in Cynomorium songaricum Rupr. J Agric Food Chem 66:5499–5509. https://doi.org/10.1021/acs.jafc.8b01737

    CAS  Article  PubMed  Google Scholar 

  10. Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R (2011) UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27:2194–2200. https://doi.org/10.1093/bioinformatics/btr381

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  11. Hikino H, Ogata M, Konno C (1983) Structure of feruloylhistamine, a hypotensive principle of Ephedra roots. Planta Med 48:108–110. https://doi.org/10.1055/s-2007-969900

    CAS  Article  PubMed  Google Scholar 

  12. Hikino H, Shimoyama N, Kasahara Y, Takahashi M, Konno C (1982) Structures of mahuannin a and B, hypotensive principles of Ephedra roots. Heterocycles 19:1381–1384

    CAS  Article  Google Scholar 

  13. Hong YS, Martinez A, Liger-Belair G, Jeandet P, Nuzillard JM, Cilindre C (2012) Metabolomics reveals simultaneous influences of plant defence system and fungal growth in Botrytis cinerea-infected Vitis vinifera cv. Chardonnay berries J Exp Bot 63:5773–5785. https://doi.org/10.1093/jxb/ers228

    CAS  Article  PubMed  Google Scholar 

  14. Jia M, Chen L, Xin HL, Zheng CJ, Rahman K, Han T, Qin LP (2016) A friendly relationship between endophytic fungi and medicinal plants: a systematic review. Front Microbiol 7:906. https://doi.org/10.3389/fmicb.2016.00906

    Article  PubMed  PubMed Central  Google Scholar 

  15. Kaul S, Sharma T, Dhar MK (2016) “Omics” tools for better understanding the plant-endophyte interactions. Front Plant Sci 7:955. https://doi.org/10.3389/fpls.2016.00955

    Article  PubMed  PubMed Central  Google Scholar 

  16. Kim HK, Choi YH, Erkelens C, Lefeber AWM, Verpoorte R (2005) Metabolic fingerprinting of Ephedra species using 1H-NMR spectroscopy and principal component analysis. Chem Pharm Bull 53:105–109. https://doi.org/10.1248/cpb.53.105

    CAS  Article  PubMed  Google Scholar 

  17. Kim HK, Choi YH, Verpoorte R (2010) NMR-based metabolomic analysis of plants. Nat Protoc 5:536–549. https://doi.org/10.1038/nprot.2009.237

    CAS  Article  PubMed  Google Scholar 

  18. Krizevski R, Bar E, Shalit O, Sitrit Y, Ben-Shabat S, Lewinsohn E (2010) Composition and stereochemistry of ephedrine alkaloids accumulation in Ephedra sinica Stapf. Phytochemistry 71:895–903. https://doi.org/10.1016/j.phytochem.2010.03.019

    CAS  Article  PubMed  Google Scholar 

  19. Li J, Zhang ZZ, Lei ZH, Qin XM, Li ZY (2018) NMR based metabolomic comparison of the antitussive and expectorant effect of Farfarae Flos collected at different stages. J Pharm Biomed Anal 150:377–385. https://doi.org/10.1016/j.jpba.2017.12.028

    CAS  Article  PubMed  Google Scholar 

  20. Ludwig-Müller J (2015) Plants and endophytes: equal partners in secondary metabolite production? Biotechnol Lett 37:1325–1334. https://doi.org/10.1007/s10529-015-1814-4

    CAS  Article  PubMed  Google Scholar 

  21. Ludwig-Müller J (2019) Interplay between endophyte and host plant in the synthesis and modification of metabolites. CABI Wallingford, UK

    Google Scholar 

  22. Macías-Rubalcava ML, Sánchez-Fernández RE, Roque-Flores G, Lappe-Oliveras P, Medina-Romero YM (2018) Volatile organic compounds from Hypoxylon anthochroum endophytic strains as postharvest mycofumigation alternative for cherry tomatoes. Food Microbiol 76:363–373. https://doi.org/10.1016/j.fm.2018.06.014

    CAS  Article  PubMed  Google Scholar 

  23. Nelson J, Shaw AJ (2019) Exploring the natural microbiome of the model liverwort: fungal endophyte diversity in Marchantia polymorpha L. Symbiosis 78:45–59. https://doi.org/10.1007/s13199-019-00597-4

    CAS  Article  Google Scholar 

  24. Pandey SS, Singh S, Babu CS, Shanker K, Srivastava NK, Shukla AK, Kalra A (2016) Fungal endophytes of Catharanthus roseus enhance vindoline content by modulating structural and regulatory genes related to terpenoid indole alkaloid biosynthesis. Sci Rep 6:26583. https://doi.org/10.1038/srep26583

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  25. Pawar RS, Grundel E (2017) Overview of regulation of dietary supplements in the USA and issues of adulteration with phenethylamines (PEAs). Drug Test Anal 9:500–517. https://doi.org/10.1002/dta.1980

    CAS  Article  PubMed  Google Scholar 

  26. Qin D, Wang L, Han M, Wang J, Song H, Yan X, Duan X, Dong J (2018) Effects of an endophytic fungus Umbelopsis dimorpha on the secondary metabolites of host-plant Kadsura angustifolia. Front Microbiol 9:2845. https://doi.org/10.3389/fmicb.2018.02845

    Article  PubMed  PubMed Central  Google Scholar 

  27. Rai M, Agarkar G (2016) Plant-fungal interactions: what triggers the fungi to switch among lifestyles? Crit Rev Microbiol 42:428–438. https://doi.org/10.3109/1040841X.2014.958052

    CAS  Article  PubMed  Google Scholar 

  28. Rodriguez RJ, White JF Jr, Arnold AE, Redmanet RS (2009) Fungal endophytes: diversity and functional roles. New Phytol 182:314–330. https://doi.org/10.1111/j.1469-8137.2009.02773.x

    CAS  Article  PubMed  Google Scholar 

  29. Rojas EC, Sapkota R, Jensen B, Jørgensen HJL, Henriksson T, Jørgensen LN, Nicolaisen M, Collinge DB (2019) Fusarium head blight modifies fungal endophytic communities during infection of wheat spikes. Microb Ecol 79:397–408. https://doi.org/10.1007/s00248-019-01426-3

    Article  PubMed  PubMed Central  Google Scholar 

  30. Saikkonen K, Wäli P, Helander M, Faeth SH (2004) Evolution of endophyte-plant symbioses. Trends Plant Sci 9:275–280. https://doi.org/10.1016/j.tplants.2004.04.005

    CAS  Article  PubMed  Google Scholar 

  31. Saikkonen K, Gundel PE, Helander M (2013) Chemical ecology mediated by fungal endophytes in grasses. J Chem Ecol 39:962–968. https://doi.org/10.1007/s10886-013-0310-3

    CAS  Article  PubMed  Google Scholar 

  32. Spies CFJ, Moyo P, Halleen F, Mostert L (2018) Phaeoacremonium species diversity on woody hosts in the Western Cape Province of South Africa. Persoonia 40:26–62. https://doi.org/10.3767/persoonia.2018.40.02

    CAS  Article  PubMed  Google Scholar 

  33. Tao HM, Wang LS, Cui ZC, Zhao DQ, Liu YH (2008) Dimeric proanthocyanidins from the roots of Ephedra sinica. Planta Med 74:1823–1825. https://doi.org/10.1055/s-0028-1088321

    CAS  Article  PubMed  Google Scholar 

  34. Tian Y, Amand S, Buisson D, Kunz C, Hachette F, Dupont J, Nay B, Prado S (2014) The fungal leaf endophyte Paraconiothyrium variabile specifically metabolizes the host-plant metabolome for its own benefit. Phytochemistry 108:95–101. https://doi.org/10.1016/j.phytochem.2014.09.021

    CAS  Article  PubMed  Google Scholar 

  35. Trujillo ME, Bacigalupe R, Pujic P, Igarashi Y, Benito P, Riesco R, Médigue C, Normand P (2014) Genome features of the endophytic actinobacterium Micromonospora lupini strain Lupac 08: on the process of adaptation to an endophytic life style? PLoS One 9:e108522. https://doi.org/10.1371/journal.pone.0108522

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  36. Yaish MW, Al-Lawati A, Jana GA, Vishwas PH, Glick BR (2016) Impact of soil salinity on the structure of the bacterial endophytic community identified from the roots of caliph medic (Medicago truncatula). PLoS One 11:e0159007. https://doi.org/10.1371/journal.pone.0159007

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  37. Zhai X, Jia M, Chen L, Zheng CJ, Rahman K, Han T, Qin LP (2017) The regulatory mechanism of fungal elicitor-induced secondary metabolite biosynthesis in medical plants. Crit Rev Microbiol 43:238–261. https://doi.org/10.1080/1040841X.2016.1201041

    CAS  Article  PubMed  Google Scholar 

  38. Zhang BM, Wang ZB, Xin P, Wang QH, Bu H, Kuang HX (2018) Phytochemistry and pharmacology of genus Ephedra. Chin J Nat Med 16:811–828. https://doi.org/10.1016/S1875-5364(18)30123-7

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (grant numbers 31670328, 31270383). We express great thanks to the Scientific Instrument Center of Shanxi University of China for technical support. We also acknowledge Dr. Vinod Vijayakumar former Senior Researcher at The Ohio State University for manuscript editing and polishing the language.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jin-Long Cui.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 36 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, Q., Xue, X., Miao, S. et al. Differential relationship of fungal endophytic communities and metabolic profiling in the stems and roots of Ephedra sinica based on metagenomics and metabolomics. Symbiosis (2020). https://doi.org/10.1007/s13199-020-00685-w

Download citation

Keywords

  • Food additives
  • Endophytic fungi
  • Ephedra sinica
  • Endomycobiomes
  • Plant-microbe interaction
  • Metabolomics