Skip to main content

Advertisement

Log in

The pioneer lichen Placopsis in maritime Antarctica: Genetic diversity of their mycobionts and green algal symbionts, and their correlation with deglaciation time

  • Published:
Symbiosis Aims and scope Submit manuscript

Abstract

Since ice-free areas in Antarctica are predicted to increase by up to 25% before the end of this century, lichens such as the genus Placopsis will be important colonizers of these newly available grounds and will still be present in later successional stages of the lichen community. The main symbionts of Placopsis species are examined for 56 specimens collected from the South Shetland Islands, Antarctica using molecular (fungal and algal nrITS, fungal RPB1, algal rbcL sequences) and morphological methods. The specimens were collected from soils with different deglaciation times. Eight uni-algal photobiont cultures were obtained and analysed from two specimens. Placopsis antarctica and P. contortuplicata proved to be monophyletic and are sister species, only the former producing vegetative diaspores (soredia). Both share the same photobiont pool and are lichenized with two closely related species, Stichococcus antarcticus and S. allas. Two haplotypes of S. antarcticus are restricted to areas deglaciated for more than 5000 years and the volcanic Deception Island indicating a shift in the photobionts of Placopsis in the course of the soil and lichen community development. These photobiont haplotypes exhibit different ecological preferences, possibly leading to adaptation of the symbiotic entity to changing environmental conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ahmadjian V (2001) Trebouxia: reflections on a perplexing and controversial lichen photobiont. In: Seckbach J (ed) Symbiosis. Springer, Houten, pp 373–383

    Google Scholar 

  • Akaike H (1973) Information theory as an extension of the maximum likelihood principle. In: Petrov BN, Csâki F (eds) Second International Symposium on Information Theory. Akadémia Kiado, Budapest, pp 267–281

    Google Scholar 

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  CAS  PubMed  Google Scholar 

  • Armstrong R (2011) The biology of the crustose lichen Rhizocarpon geographicum. Symbiosis 55:53–67. https://doi.org/10.1007/s13199-011-0147-x

    Article  Google Scholar 

  • Beck A (2002) Selektivität der Symbionten schwermetalltoleranter Flechten. PhD thesis, Ludwig-Maximilians-Universität München, Munich, ISBN: 3-9808102-0-8

  • Beck A, Koop H-U (2001) Analysis of the photobiont population in lichens using a single-cell manipulator. Symbiosis 31:57–67

    Google Scholar 

  • Beck A, Mayr C (2012) Nitrogen and carbon isotope variability in the green-algal lichen Xanthoria parietina and their implications on mycobiont-photobiont interactions. Ecol Evol 2:3132–3144

    Article  PubMed  PubMed Central  Google Scholar 

  • Belnap J, Büdel B, Lange OL (2001) Biological soil crusts: characteristics and distribution. In: Belnap J, Lange OL (eds) Biological Soil Crusts: Structure, Function, and Management. Ecological Studies (Analysis and Synthesis), vol 150. Springer, Berlin

    Google Scholar 

  • Birkenmajer K (1992) Volcanic succession at Deception Island, West Antarctica: a revised lithostratigraphic standard. Studia Geologica Polonica 101:27–82

    Google Scholar 

  • Bohuslavová O, Macek P, Redcenko O, Láska K, Nedbalová L, Elster J (2018) Dispersal of lichens along a successional gradient after deglaciation of volcanic mesas on northern James Ross Island, Antarctic Peninsula. Polar Biol 41:2221–2232

    Article  Google Scholar 

  • Borchhardt N, Schiefelbein U, Abarca N, Boy J, Mikhai-lyuk T, Sipman HJM, Karsten U (2017) Diversity of algae and lichens in biological soil crusts of Ardley and King George islands, Antarctica. Antarct Sci 29:229–237

    Article  Google Scholar 

  • Boy J, Godoy R, Shibistova O, Boy D, McCulloch R, De La Fuente AA, Morales MA, Mikutta R, Guggenberger G (2016) Successional patterns along soil development gradients formed by glacier retreat in the Maritime Antarctic, King George Island. Rev Chil Hist Nat 89. https://doi.org/10.1186/s40693-016-0056-8

  • Breen K, Lévesque E (2008) The influence of biological soil crusts on soil characteristics along a High Arctic Glacier Fore-land, Nunavut, Canada. Arct Antarct Alp Res 40:287–297

    Article  Google Scholar 

  • Casano LM, Del Campo EM, García-Breijo FJ, Reig-Armiñana J, Gasulla F, Del Hoyo A, Guéra A, Barreno E (2011) Two Trebouxia algae with different physiological performances are ever-present in lichen thalli of Ramalina farinacea. Coexistence versus competition? Environ Microbiol 13:806–818

    Article  CAS  PubMed  Google Scholar 

  • Clement M, Posada D, Crandall KA (2000) TCS: a computer program to estimate gene genealogies. Mol Ecol 9:1657–1659

    Article  CAS  PubMed  Google Scholar 

  • Darriba D, Taboada GL, Doallo R, Posada D (2012) JModelTest 2: more models, new heuristics and parallel computing. Nat Methods 9:772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De los Ríos A, Raggio J, Pérez-Ortega S, Vivas M, Pintado A, Green TGA, Ascaso C, Sancho LG (2011) Anatomical, morphological and ecophysiological strategies in Placopsis pycnotheca (lichenized fungi, Ascomycota) allowing rapid colonization of recently deglaciated soils. Flora-Morphology, Distribution, Functional Ecology of Plants 206:857–864

    Article  Google Scholar 

  • De Wever A, Leliaert F, Verleyen E, Vanormelingen P, Van der Gucht K, Hodgson DA, Sabbe K, Vyverman W (2009) Hidden levels of phylodiversity in Antarctic green algae: further evidence for the existence of glacial refugia. Proc R Soc Lond B Biol Sci 276:3591–3599

    Article  Google Scholar 

  • Domaschke S, Fernández-Mendoza F, García MA, Martín M, Printzen C (2012) Low genetic diversity in Antarctic populations of the lichen-forming ascomycete Cetraria aculeata and its photobiont. Polar Res 31:17353–17366

    Article  Google Scholar 

  • Drummond AJ, Suchard MA, Xie D, Rambaut A (2012) Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol Biol Evol 29:1969–1973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26:2460–2461

    Article  CAS  PubMed  Google Scholar 

  • Edgar RC (2016) UCHIME2: Improved chimera detection for amplicon sequences. https://doi.org/10.1101/074252

  • Engelen A, Convey P, Popa O, Ott S (2016) Lichen photobiont diversity and selectivity at the southern limit of the maritime Antarctic region (Coal Nunatak, Alexander Island). Polar Biol 39:2403–2410

    Article  Google Scholar 

  • Ettl H, Gärtner G (2014) Syllabus der Boden-, Luft- und Flechtenalgen. Springer, Berlin

    Book  Google Scholar 

  • Favero-Longo SE, Worland MR, Convey P, Lewis-Smith RI, Piervittori R, Guglielmin M, Cannone N (2012) Primary succession of lichen and bryophyte communities following glacial recession on Signy Island, South Orkney Islands, Maritime Antarctic. Antarct Sci 24:323–336

    Article  Google Scholar 

  • Fermani P, Mataloni G, Van de Vijver B (2007) Soil microalgal communities on an Antarctic active volcano (Deception Island, South Shetlands). Polar Biol 30:1381–1393

    Article  Google Scholar 

  • Fernández-Mendoza F, Domaschke S, García MA, Jordan P, Martín MP, Printzen C (2011) Population structure of mycobionts and photobionts of the widespread lichen Cetraria aculeata. Mol Ecol 20:1208–1232

    Article  PubMed  Google Scholar 

  • Frey B, Bühler L, Schmutz S, Zumsteg A, Furrer G (2013) Molecular characterization of phototrophic microorganisms in the forefield of a receding glacier in the Swiss Alps. Environ Res Lett 8:015033

    Article  CAS  Google Scholar 

  • Fourcade NH (1972) Vulcanismo de la Isla Decepción. Contribución Del Instituto Antartico Argentino 148:1–18

    CAS  Google Scholar 

  • Galloway DJ, Lewis-Smith RI, Quilhot W (2005) A new species of Placopsis (Agyriaceae: Ascomycota) from Antarctica. Lichenologist 37:321–327

    Article  Google Scholar 

  • Garrido-Benavent I, de los Ríos A, Fernández-Mendoza F, Pérez-Ortega S (2018) No need for stepping stones: Direct, joint dispersal of the lichen-forming fungus Mastodia tessellata (Ascomycota) and its photobiont explains their bipolar distribution. J Biogeogr 45:213–224

    Article  Google Scholar 

  • Haugland JE, Beatty SW (2005) Vegetation establishment, succession and microsite frost disturbance on glacier forelands within patterned ground chronosequences. J Biogeogr 32:145–153

    Article  Google Scholar 

  • Hertel H (1988) Problems in monographing Antarctic crustose lichens. Polarforschung 58:65–76

    Google Scholar 

  • Hillis DM, Bull JJ (1993) An empirical test of bootstrapping as a method for assessing the confidence in phylogenetic analysis. Syst Biol 42:182–192

    Article  Google Scholar 

  • Hjört C, Björck S, Ingólfsson O, Möller P (1998) Holocene deglaciation and climate history of the northern Antarctic Peninsula region: a discussion of correlations between the Southern and Northern Hemispheres. Ann Glaciol 27:110–112

    Article  Google Scholar 

  • Hodač L, Hallmann C, Spitzer K, Elster J, Faßhauer F, Brinkmann N, Lepka D, Diwan V, Friedl T (2016) Widespread green algae Chlorella and Stichococcus exhibit polar-temperate and tropical-temperate biogeography. FEMS Microbiol Ecol 92:fiw122

    Article  CAS  PubMed  Google Scholar 

  • Jones TC, Hogg ID, Wilkins RJ, Green TGA (2013) Photobiont selectivity for lichens and evidence for a possible glacial refugium in the Ross Sea Region, Antarctica. Polar Biol 36:767–774

    Article  Google Scholar 

  • Khan N, Tuffin M, Stafford W, Cary C, Lacap DC, Pointing SB, Cowan D (2011) Hypolithic microbial communities of quartz rocks from Miers Valley, McMurdo Dry Valleys, Antarctica. Polar Biol 34:1657–1668

    Article  Google Scholar 

  • Kvíderová J, Lukavský J (2005) The comparison of ecological characteristics of Stichococcus (Chlorophyta) strains isolated from polar and temperate regions. Algol Stud 118:127–140

    Article  Google Scholar 

  • Lamb IM (1947) A monograph of the lichen genus Placopsis Nyl. Lilloa 13:151–288

    Google Scholar 

  • Larget B, Simon DL (1999) Markov chain Monte Carlo algorithms for the Bayesian analysis of phylogenetic trees. Mol Biol Evol 16:750–759

    Article  CAS  Google Scholar 

  • Leavitt SD, Kraichak E, Nelsen MP, Altermann S, Divakar PK, Alors D, Esslinger TL, Crespo A, Lumbsch HT (2015) Fungal specificity and selectivity for algae play a major role in determining lichen partnerships across diverse ecogeographic regions in the lichen-forming family Parmeliaceae (Ascomycota). Mol Ecol 24:3779–3797

    Article  PubMed  Google Scholar 

  • Lee JR, Raymond B, Bracegirdle TJ, Chadès I, Fuller RA, Shaw JD, Terauds A (2017) Climate change drives expansion of Antarctic ice-free habitat. Nature 547:49–54

    Article  CAS  PubMed  Google Scholar 

  • Liu K, Warnow TJ, Holder MT, Nelesen SM, Yu J, Stamatakis AP, Linder CR (2012) SATe-II: very fast and accurate simultaneous estimation of multiple sequence alignments and phylogenetic trees. Syst Biol 61:90–106

    Article  PubMed  Google Scholar 

  • López-Martínez J, Serrano E (2002) Geomorphology. In: López-Martínez J, Smellie JL, Thomson JW, Thomson MRA (eds) Geology and geomorphology of Deception Island. British Antarctic Survey. Natural Environment Research Council, Cambridge, pp 31–39

    Google Scholar 

  • Mäusbacher R (1991) Die jungquartäre Relief- und Klimageschichte im Bereich der Fildeshalbinsel Süd-Shetland-Inseln, Antarktis. Heidelberger Geographische Arbeiten 89

  • Matheny PB, Liu YJ, Ammirati JF, Hall BD (2002) Using RPB1 and RPB2 nucleotide sequences (Inocybe; Agaricales). Am J Bot 89:688–698

    Article  CAS  PubMed  Google Scholar 

  • Medhaug I, Stolpe MB, Fischer EM, Knutti R (2017) Reconciling controversies about the ‘global warming hiatus’. Nature 545:41–47

    Article  CAS  PubMed  Google Scholar 

  • Meredith MP, King JC (2005) Rapid climate change in the ocean west of the Antarctic Peninsula during the second half of the 20th century. Geophys Res Lett 32:L19604

    Google Scholar 

  • Michel RFM, Schaefer CEGR, López-Martínez J, Simas FNB, Haus NW, Serrano E, Bockheim JG (2014) Soils and landforms from Fildes Peninsula and Ardley Island, Maritime Antarctica. Geomorphology 225:76–86

    Article  Google Scholar 

  • Miller MA, Pfeiffer W, Schwartz T (2010) Creating the CIPRES Science Gateway for Inference of Large Phylogenetic Trees. Proceedings of the Gateway Computing Environments Workshop (GCE), 14 November 2010, New Orleans, LA, U.S.A., pp 1–8

  • Mink S, López-Martínez J, Maestro A, Garrote J, Ortega JA, Serrano E, Durán JJ, Schmid T (2014) Insights into deglaciation of the largest ice-free area in the South Shetland Islands (Antarctica) from quantitative analysis of the drainage system. Geomorphology 225:4–24

    Article  Google Scholar 

  • Müller K, Müller J, Neinhuis C, Quandt D (2010) PhyDE: Phylogenetic Data Editor, version 0.9971, computer program [online], http://www.phyde.de

  • Muggia L, Leavitt S, Barreno E (2018) The hidden diversity of lichenized Trebouxiophyceae (Chlorophyta). Phycologia 57:503–524

    Article  Google Scholar 

  • Nascimbene J, Mayrhofer H, Dainese M, Bilovitz PO (2017) Assembly patterns of soil-dwelling lichens after glacier retreat in the European Alps. J Biogeogr 44:1393–1404

    Article  PubMed  PubMed Central  Google Scholar 

  • Nelsen MP, Rivas Plata E, Andrew CJ, Lücking R, Lumbsch HT (2011) Phylogenetic diversity of trentepohlialean algae associated with lichen-forming fungi. J Phycol 47:282–290

    Article  PubMed  Google Scholar 

  • Neustupa J, Eliáš M, Šejnohová L (2007) A taxonomic study of two Stichococcus species (Trebouxiophyceae, Chlorophyta) with a starch-enveloped pyrenoid. Nova Hedwigia 84:51–63

    Article  Google Scholar 

  • Nolan C, Overpeck JO, Allen JRM, Anderson PM, Betancourt JL, Binney HA, Brewer S, Bush MB, Chase BM, Cheddadi R, Djamali M, Dodson J, Edwards ME, Gosling WD, Haberle S, Hotchkiss SC, Huntley B, Ivory SJ, Kershaw AP, Kin S-H, Latorre C, Leydet M, Lézine A-M, Liu K-B, Liu Y, Lozhkin AV, McGlone MS, Marchant RA, Momohara A, Moreno A, Müller S, Otto-Bliesner BL, Shen C, Stevenson J, Takahara H, Tarasov PE, Tipton J, Vincens A, Weng C, Xu Q, Zheng Z, Jackson ST (2018) Past and future global transformation of terrestrial ecosystems under climate change. Science 361:920–923

    Article  CAS  PubMed  Google Scholar 

  • Ó Cofaigh C, Davies BJ, Livingstone SJ, Johnson JS, Smith JA, Anderson JB, Bentley MJ, Canals M, Domack E, Dowsdeswell JA, Evans J, Glasser NF, Hillenbrand C-D, Larter RD, Roberts SJ, Simms AR (2014) Reconstruction of ice-sheet changes in the Antarctic Peninsula since the Last Glacial Maximum. Quat Sci Rev 100:87–110

    Article  Google Scholar 

  • Olech M (2004) Lichens of King George Island, Antarctica. Drukarnia Uniwersytetu Jagiellńskiego, Kraków

    Google Scholar 

  • Oliva M, Antoniades D, Giralt S, Granados I, Pla S, Toro M, Sanjurjo J, Liu EJ, Vieira G (2016) The Holocene deglaciation of the Byers Peninsula (Livingston Island, Antarctica) based on the dating of lake sedimentary records. Geomorphology 261:89–102

    Article  Google Scholar 

  • Olsacher J (1956) Contribución a la geología de la Antártida Occidental: I. Contribución al conocimiento geológico de la Isla Decepción. Contribución Del Instituto Antartico Argentino 2:1–76

    Google Scholar 

  • Øvstedal D, Lewis-Smith R (2001) Lichens of Antarctica and South Georgia, A Guide to their identification and ecology. Cambridge University Press, Cambridge

    Google Scholar 

  • Pattengale ND, Alipour M, Bininda-Emonds OR, Moret BM, Stamatakis A (2010) How many bootstrap replicates are necessary? J Comput Biol 17:337–354

    Article  CAS  PubMed  Google Scholar 

  • Peksa O, Škaloud P (2011) Do photobionts influence the ecology of lichens? A case study of environmental preferences in symbiotic green alga Asterochloris (Trebouxiophyceae). Mol Ecol 20:3936–3948

    Article  PubMed  Google Scholar 

  • Pérez-Ortega S, de los Ríos A, Crespo A, Sancho LG (2010) Symbiotic lifestyle and phylogenetic relationships of the bionts of Mastodia tessellata (Ascomycota, incertae sedis). Am J Bot 97:738–752

    Article  PubMed  Google Scholar 

  • Pérez-Ortega S, Ortiz-Álvarez R, Green TGA, de los Ríos A (2012) Lichen myco- and photobiont diversity and their relationships at the edge of life (McMurdo Dry Valleys, Antarctica). FEMS Microbiol Ecol 82:429–448

    Article  CAS  PubMed  Google Scholar 

  • Pessi IS, Pushkareva E, Lara Y, Borderie F, Wilmotte A, Elster J (2018) Marked succession of cyanobacterial communities following glacier retreat in the High Arctic. Microb Ecol. https://doi.org/10.1007/s00248-018-1203-3

  • Poelking EL, Schaefer CER, Fernandes Filho EI, de Andrade AM, Spielmann AA (2014) Soil-landform-plant communities relationships of a periglacial landscape at Potter Peninsula, Maritime Antarctica. Solid Earth Discussions 6:2261–2292

    Article  Google Scholar 

  • Posada D (2005) TCS 1.21 manual. Retrieved from: http://w3.ualg.pt/~rcastil/SOFTWARE_WINDOWS/TCS1.21/docs/TCS1.21.pdf

  • Pushkareva E, Pessi IS, Wilmotte A, Elster J (2015) Cyanobacterial community composition and impact of nutrient availability in Arctic soil crusts at different stages of development. FEMS Microbiol Ecol 91:fiv143. https://doi.org/10.1093/femsec/fiv143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pushkareva E, Kvíderová J, Šimek M, Elster J (2017) Nitrogen fixation and diurnal changes of photosynthetic activity in Arctic soil crusts at different development state. Eur J Soil Biol 79:21–31

    Article  CAS  Google Scholar 

  • Raggio J, Green TGA, Crittenden PD, Pintado A, Vivas M, Pérez-Ortega S, de los Ríos A, Sancho LG (2012) Comparative ecophysiology of three Placopsis species, pioneer lichens in recently exposed Chilean glacial forelands. Symbiosis 56:55–66

    Article  CAS  Google Scholar 

  • Rindi F, Allali HA, Lam DW, López-Bautista JM (2010) An overview of the biodiversity and biogeography of terrestrial green algae. In: Rescigno V, Maletta S (eds) Biodiversity hotspots. Nova Science Publishers, Hauppauge, pp 105–122

    Google Scholar 

  • Rippin M, Lange S, Sausen N, Becker B (2018) Biodiversity of biological soil crusts from the Polar Regions revealed by metabarcoding. FEMS Microbiol Ecol 94:fiy036

    Article  CAS  Google Scholar 

  • Rodriguez JM, Passo A, Chiapella JO (2018) Lichen species assemblage gradient in South Shetlands Islands, Antarctica: relationship to deglaciation and microsite conditions. Polar Biol 41:523–531

    Article  Google Scholar 

  • Romeike J, Friedl T, Helms G, Ott S (2002) Genetic diversity of algal and fungal partners in four species of Umbilicaria (lichenized ascomycetes) along a transect of the Antarctic Peninsula. Mol Biol Evol 19:1209–1207

    Article  CAS  PubMed  Google Scholar 

  • Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574

    Article  CAS  PubMed  Google Scholar 

  • Roy-Ocotla G, Carrera J (1993) Aeroalgae: response to some aerobiological questions. Grana 32:48–56

    Article  Google Scholar 

  • Ruprecht U, Brunauer G, Printzen C (2012) Genetic diversity of photobionts in Antarctic lecideoid lichens from an ecological view point. Lichenologist 44:661–678

    Article  Google Scholar 

  • Sancho LG, Schulz F, Schroeter B, Kappen L (1999) Bryophyte and lichen flora of South Bay (Livingston Island: South Shetland Islands, Antarctica). Nova Hedwigia 68:301–337

    Google Scholar 

  • Schmidt SK, Reed SC, Nemergut DR, Grandy AS, Cleveland CC, Weintraub MN, Hill AW, Costello EK, Meyer AF, Neff JC et al (2008) The earliest stages of ecosystem succession in high-elevation (5000 metres above sea level), recently deglaciated soils. Proc R Soc B Biol Sci 275:2793–2802

    Article  CAS  Google Scholar 

  • Schmitt I, Lumbsch HT, Søchting U (2003) Phylogeny of the lichen genus Placopsis and its allies based on Bayesian analyses of nuclear and mitochondrial sequences. Mycologia 95:827–835

    Article  CAS  PubMed  Google Scholar 

  • Seong YB, Owen LA, Lim HS, Yoon HI, Kim Y, Lee YI, Caffee MW (2009) Rate of late Quaternary ice-cap thinning on King George Island, South Shetland Islands, West Antarctica defined by cosmogenic 36Cl surface exposure dating. Boreas 38:207–213

    Article  Google Scholar 

  • Simões JC (2011) O papel do gelo antártico no sistema climático. In: Goldemberg J (ed) Antártica e as mudanḉas globais: um desafio para a humanidade 9. Blucher, São Paulo, pp 69–101

    Google Scholar 

  • Simoes CL, da Rosa KK, Czapela FF, Vieira R, Simoes JC (2015) Collins Glacier Retreat Process and Regional Climatic Variations, King George Island, Antarctica. Geogr Rev 105:462–471

    Article  Google Scholar 

  • Soler-Membrives A, Linse K, Miller KJ, Arango CP (2017) Genetic signature of Last Glacial Maximum regional refugia in a circum-Antarctic sea spider. R Soc Open Sci 4:170615. https://doi.org/10.1098/rsos.170615

    Article  PubMed  PubMed Central  Google Scholar 

  • Spielmann AA, Pereira AB (2012) Lichens on the Maritime Antarctica. Glalia 4:1–28

    Google Scholar 

  • Stamatakis A (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30:1312–1313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stamatakis A (2016) The RAxML v8.2.X Manual. Heidelberg Institute for Theoretical Studies. http://sco.h-its.org/exelixis/web/software/raxml/#documentation. (5 June 2018, date last accessed)

  • Stamatakis A, Hoover P, Rougemont P (2008) A rapid bootstrap algorithm for the RAxML web servers. Syst Biol 57:758–771

    Article  PubMed  Google Scholar 

  • Stiller JW, Hall BD (1997) The origin of red algae: implications for plastid evolution. Proc Natl Acad Sci U S A 94:4520–4525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Swofford DL (2002) PAUP*. Phylogenetic analysis using parsimony (*and other methods), Version 4 edn. Sinauer Associates, Sunderland

    Google Scholar 

  • Thüs H, Muggia L, Pérez-Ortega S, Favero-Longo SE, Joneson S, O'Brien H, Nelsen MP, Duque-Thüs R, Grube M, Friedl T et al (2011) Revisiting photobiont diversity in the lichen family Verrucariaceae (Ascomycota). Eur J Phycol 46:399–415

    Article  Google Scholar 

  • Tibell L (2001) Photobiont association and molecular phylogeny of the lichen genus Chaenotheca. Bryologist 104:191–198

    Article  Google Scholar 

  • Tishkov RJ (1986) Primary succession in Arctic tundra on the west coast of Spitsbergen (Svalbard). Polar Geogr Geol 10:148–156

    Article  Google Scholar 

  • Turner J, Colwell SR, Marshall GJ, Lachlan-Cope TA, Carleton AM, Jones PD, Lagun V, Reid PA, Iagovkina S (2005) Antarctic climate change during the last 50 years. Int J Climatol 25:279–294

    Article  Google Scholar 

  • Turner J, Lu H, White I et al (2016) Absence of 21st century warming on Antarctic Peninsula consistent with natural variability. Nature 535:411–415

    Article  CAS  PubMed  Google Scholar 

  • White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis M, Gelfand D, Shinsky J, White T (eds) PCR Protocols: A Guide to Methods and Applications. Academic Press, London, pp 315–322

    Google Scholar 

  • Wirtz N, Lumbsch HT, Green TGA, Türk R, Pintado A, Sancho L, Schroeter B (2003) Lichen fungi have low cyanobiont selectivity in maritime Antarctica. New Phytol 160:177–183

    Article  PubMed  Google Scholar 

  • Zahradníková M, Andersen HL, Tønsberg T, Beck A (2018) Molecular evidence of Apatococcus, including A. fuscideae sp. nov., as photobiont in the genus Fuscidea. Protist 168:425–438

    Article  CAS  Google Scholar 

  • Zidarova R (2008) Algae from Livingston Island (S Shetland Islands): a checklist. Phytologia Balcanica 14:19–35

    Google Scholar 

Download references

Acknowledgements

We cordially thank Dr. Georg Gärtner (Innsbruck, Austria) for providing the authentic culture of Stichococcus allas (ASIB: IB 37). Mark R. D. Seaward (Bradford, U. K.) is sincerely recognised for improving the English text.

Funding

The molecular part of this work was supported by the Staatliche Naturwissenschaftliche Sammlungen Bayerns [SNSBinnovativ to AB]. Logistic support was provided by the National Fund for Scientific and Technological Development [FONDECYT 1118745 to AC-K] and the Instituto Antártico Chileno [RT-2716 to AC-K].

Author information

Authors and Affiliations

Authors

Contributions

AB designed the study, collected the samples, isolated and analysed the photobiont cultures, guided the molecular work, prepared the photographs and wrote the manuscript. JB performed part of the molecular work, guided ID, did the phylogenetic analyses and wrote the manuscript. ACK provided logistic support and travel organization to Antarctica, participated in sample collection and revised the MS. ID performed part of the molecular work and revised the MS.

Corresponding author

Correspondence to Andreas Beck.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 48 kb)

ESM 2

(DOCX 27 kb)

ESM 3

(XLSX 24 kb)

Fig. S1

Phylogenetic relationships of Placopsis contortuplicata (PC) and P. antarctica (PA) photobionts and its allies. The phylogeny is based on ITS2 sequences and the topology shown here is the result of the Maximum Likelihood analysis. Bootstrap percentage values ≥70% are indicated at branches, followed by Shimodaira-Hasegawa values ≥0.70. Stars indicate Bayesian Posterior Probability values ≥0.95. AB-numbers refer to cultures. Stichococcus allas and S. antarcticus accessions are coloured according to their collection locality. Black letters indicate additional taxa from Antarctica. Abbreviations: Ar = Ardley, By = Byers Peninsula, Co = Coppermine Peninsula, DI = Deception Island, FI = Fildes Peninsula, KGI = King George Island, LI = Livingston Island, Po = Potter Peninsula, RI = Roberts Island; C = Centre, E = East, NE = Northeast, NW = Northwest, S = South, SE = Southeast, SW = Southwest, W = West. (PNG 699 kb)

High Resolution Image (EPS 7135 kb)

Fig. S2

Green algal photobiont haplotype network based on rbcL sequences. AU = Austria Ötztal Alps, DI = Deception Island, KGI = King George Island, LI = Livingston Island, RI = Robert Island. (PNG 248 kb)

High Resolution Image (EPS 46 kb)

Fig. S3

Green algal photobiont haplotype network based on rbcL and ITS sequences. AU = Austria Ötztal Alps, CH = Switzerland Urner Alps, DI = Deception Island, KGI = King George Island, LI = Livingston Island, RI = Robert Island. (PNG 112 kb)

High Resolution Image (EPS 62 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beck, A., Bechteler, J., Casanova-Katny, A. et al. The pioneer lichen Placopsis in maritime Antarctica: Genetic diversity of their mycobionts and green algal symbionts, and their correlation with deglaciation time. Symbiosis 79, 1–24 (2019). https://doi.org/10.1007/s13199-019-00624-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13199-019-00624-4

Keywords

Navigation