Skip to main content

Advertisement

Log in

Obliteration of phosphorus deficiency in plants by microbial interceded approach

  • Published:
Symbiosis Aims and scope Submit manuscript

Abstract

Phosphorus plays an indispensable part in keeping up soil richness and securing global sustenance production, however, its chief proportions remain interlocked in various insoluble forms of Ca, Fe and Al ion precipitates that cannot be taken by the plants proficiently. This prompts to an indiscriminate application of phosphatic chemical fertilizers to the crop field which has led to substantial pollution of soil, air, water and deleterious effects on soil health due to leaching and run-off of phosphorus into soil and water table. Microorganisms such as bacteria, fungi, actinobacteria, and cyanobacteria play a crucial role in mobilizing inorganic and organic P in the soil and simultaneously increases P uptake by the plant. In the present review, endeavors have been made to emphasize on the occurrence, mechanism, the role of phosphate solubilizing bacteria in solubilization of fixed phosphorus and genetics of phosphate solubilizing microorganisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Akintokun AK, Akande GA, Akintokun PO, Popoola TOS, Babalola AO (2007) Solubilization of insoluble phosphate by organic acid producing fungi isolated from Nigerian soil. Int J Soil Sci 2:301–307

    Article  CAS  Google Scholar 

  • Alam S, Khalil S, Ayub N, Rashid M (2002) In vitro solubilization of inorganic phosphate by phosphate solubilizing microorganisms (PSM) from maize rhizosphere. Int J Agric Biol 4:454–458

    CAS  Google Scholar 

  • Aly MM, Tork S, Al-Garni SM, Kabli SA (2015) Production and characterization of phytase from Streptomyces luteogriseus R10 isolated from decaying wood samples. Int J Agric Biol 17:515–522

    Article  CAS  Google Scholar 

  • Arai Y, Sparks DL (2007) Phosphate reaction dynamics in soils and soil components: a multiscale approach. In: Donald LS (ed) Advances in agronomy, vol 94. Academic Press, Waltham, pp 135–179

    Google Scholar 

  • Attar HA, Blavet D, Selim EM, Abdelhamid MT, Drevon JJ (2012) Relationship between phosphorus status and nitrogen fixation by common beans (Phaseolus vulgaris L.) under drip irrigation. Int J Environ Sci Technol 9:1–13

    Article  CAS  Google Scholar 

  • Babu-Khan S, Yeo TC, Martin WL, Duron MR, Rogers RD, Goldstein AH (1995) Cloning of a mineral phosphate-solubilizing gene from Pseudomonas cepacia. Appl Environ Microbiol 61:972–978

    CAS  PubMed  PubMed Central  Google Scholar 

  • Baek JH, Lee SY (2006) Novel gene members in the Pho regulon of Escherichia coli. FEMS Microbiol Lett 264:104–109

    Article  CAS  PubMed  Google Scholar 

  • Bagyaraj DJ, Sharma MP, Maiti D (2015) Phosphorus nutrition of crops through arbuscular mycorrhizal fungi. Curr Sci 108:1288–1298

    CAS  Google Scholar 

  • Bains M, Fernandez L, Hancock REW (2012) Phosphate starvation promotes swarming motility and cytotoxicity of Pseudomonas aeruginosa. Appl Environ Microbiol 78:6762–6768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Banerjee S, Palit R, Sengupta C, Standing D (2010) Stress induced phosphate solubilization by Arthrobacter sp. and Bacillus sp. isolated from tomato rhizosphere. Aust J Crop Sci 4:378–383

    CAS  Google Scholar 

  • Banik S, Dey BK (1982) Available phosphate content of an alluvial soil as influenced by inoculation of some isolated phosphate solubilizing microorganisms. Plant Soil 69:353–364

    Article  CAS  Google Scholar 

  • Bashir K, Ali S, Umair A (2011) Effect of different phosphorus levels on xylem sap components and their correlation with growth variables of mash bean. Sarhad J Agric 27:1–6

    Google Scholar 

  • Behera BC, Singdevsachan SK, Mishra RR, Sethi BK, Dutta SK, Thatoi HN (2016) Phosphate solubilizing bacteria from mangrove soils of Mahanadi River delta, Odisha, India. World J Agric Res 4:18–23

    Google Scholar 

  • Behera BC, Yadav H, Singh SK, Mishra RR, Sethi BK, Dutta SK, Thatoi HN (2017) Phosphate solubilization and acid phosphatase activity of Serratia sp. isolated from mangrove soil of Mahanadi river delta, Odisha, India. J Gen Eng Biotechnol 15:169–178

    Article  CAS  Google Scholar 

  • Bhardwaj S, Kaushal R, Kaushal M, Bhardwaj KK (2018) Integrated nutrient management for improved cauliflower yield and soil health. Int J Veg Sci 24:29–42

    Article  Google Scholar 

  • Buch AD, Archana G, Kumar GN (2009) Heterologous expression of phosphoenolpyruvate carboxylase enhances the phosphate solubilizing ability of fluorescent pseudomonads by altering the glucose catabolism to improve biomass yield. Bioresour Technol 101:679–687

    Article  CAS  PubMed  Google Scholar 

  • Carmen B, Roberto D (2010) Improvement of phosphate solubilization and Medicago plant yield by an indole-3-acetic acid-overproducing strain of Sinorhizobium meliloti. Appl Environ Microbiol 76:4626–4632

    Article  CAS  Google Scholar 

  • Castagno LN, Estrella MJ, Sannazzaro A, Grassano AE, Ruiz OA (2011) Phosphate-solubilization mechanism and in vitro plant growth promotion activity mediated by Pantoea eucalypti isolated from Lotus tenuis rhizosphere in the Salado River Basin (Argentina). J Appl Microbiol 110:1151–1165

    Article  CAS  PubMed  Google Scholar 

  • Castro RO, Cantero EV, Bucio JL (2008) Plant growth promotion by Bacillus megaterium involves cytokinin signalling. Plant Signal Behav 3:263–265

    Article  Google Scholar 

  • Chatterjee S, Sau GB, Sinha S, Mukherjee SK (2012) Effect of co-inoculation of plant growth-promoting rhizobacteria on the growth of amaranth plants. Arch Agron Soil Sci 58:1387–1397

    Article  CAS  Google Scholar 

  • Chauhan A, Guleria S, Balgir PP, Walia A, Mahajan R, Mehta P, Shirkot CK (2017) Tricalcium phosphate solubilization and nitrogen fixation by newly isolated Aneurinibacillus aneurinilyticus CKMV1 from rhizosphere of Valeriana jatamansi and its growth promotional effect. Braz J Microbiol 48:294–304

    Article  CAS  PubMed  Google Scholar 

  • Chen YP, Rekha PD, Arun AB, Shen FT, Lai WA, Young CC (2006) Phosphate solubilizing bacteria from subtropical soil and their tricalcium phosphate solubilizing abilities. Appl Soil Ecol 34:33–41

    Article  Google Scholar 

  • Chen W, Yang F, Zhang L, Wang J (2016) Organic acid secretion and phosphate solubilizing efficiency of Pseudomonas sp. PSB12: effects of phosphorus forms and carbon sources. Geomicrobiol J 33:870–877

    Article  CAS  Google Scholar 

  • Cunningham JE, Kuiack C (1992) Production of citric and oxalic acids and solubilization of calcium phosphate by Penicillium bilaii. Appl Environ Microbiol 58:1451–1458

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dash N, Dangar TK (2017) Perspectives of phosphate solubilizing microbes for plant growth promotion, especially rice: a review. Int J Biochem Res Rev 18:1–16

    Article  CAS  Google Scholar 

  • Datta M, Palit R, Sengupta C, Pandit MK, Banerjee S (2011) Plant growth promoting rhizobacteria enhance growth and yield of chilli (Capsicum annuum L.) under field conditions. Aus J Crop Sci 5:531–536

    Google Scholar 

  • Demirkan E, Baygin E, Usta A (2014) Screening of phytate hydrolysis Bacillus sp. isolated from soil and optimization of the certain nutritional and physical parameters on the production of phytase. Turk J Biochem 39:206–214

    Article  CAS  Google Scholar 

  • Demissie S, Muleta D, Berecha G (2013) Effect of phosphate solubilizing bacteria on seed germination and seedling growth of faba bean (Vicia faba L.). Int J Agric Res 8:123–136

    Article  CAS  Google Scholar 

  • Dey R, Pal KK, Bhatt DM, Chaunhan SM (2004) Growth promotion and yield enchancement of peanut (Arachis hypogaea L.) by application of plant growth-promoting rhizobacteria. Microbiol Res 159:371–394

    Article  CAS  PubMed  Google Scholar 

  • Dursun A, Ekinci M, Donmez MF (2010) Effects of foliar application of plant growth promoting bacterium on chemical contents, yield and growth of tomato (Lycopersicon esculentum L.) and cucumber (Cucumis sativus L.). Pak J Bot 42:3349–3356

    CAS  Google Scholar 

  • Ebrahim RS (2008) Studies on the identification, isolation, characterization and effectiveness of root nodule actinomycete (Frankia) on the growth of Casuarina species of Kerela. Thesis, Mahatma Gandhi University, Kottayam, India

  • Elias F, Woyessa D, Muleta D (2016) Phosphate solubilization potential of rhizosphere fungi isolated from plants in Jimma zone, Southwest Ethiopia. Int J Microbiol 2016:1–11

    Article  CAS  Google Scholar 

  • Espinosa-Victoria D, Lopez-Reyes L, de La Cruz-Benitez A (2009) Use of 16s RNA gene for characterization of phosphate solubilizing bacteria associated with corn. Rev Fitotec Mex 32:31–37

    Google Scholar 

  • Farhat MB, Fourati A, Chouayekh H (2013) Coexpression of the pyrroloquinoline quinone and glucose dehydrogenase genes from Serratia marcescens CTM 50650 conferred high mineral phosphate-solubilizing ability to Escherichia coli. Appl Biochem Biotechnol 170:1738–1750

    Article  CAS  PubMed  Google Scholar 

  • Fitriatin BN, Arief DH, Simarmata T, Santosa DA, Joy B (2011) Phosphatase-producing bacteria isolated from Sanggabuana forest and their capability to hydrolyze organic phosphate. J Soil Sci Environ Manage 2:299–303

    CAS  Google Scholar 

  • Fraga R, Rodriguez H, Gonzalez T (2001) Transfer of the gene encoding the nap a acid phosphatase from Morganella morganii to a Burkholderia cepacia strain. Acta Biotechnol 21:359–369

    Article  CAS  Google Scholar 

  • Franca DVC, Kupper KC, Magri MMR, Gomes TM, Rossi F (2017) Trichoderma spp. isolates with potential of phosphate solubilization and growth promotion in cherry tomato. Pesq Agropec Trop 47:360–368

    Article  Google Scholar 

  • Franco-Correa M, Quintanaa A, Duquea C, Suarez C, Rodriguez MX, Barea JM (2010) Evaluation of actinomycete strains for key traits related with plant growth promotion and mycorrhiza helping activities. Appl Soil Ecol 45:209–217

    Article  Google Scholar 

  • Frankowski J, Lorito M, Scala F, Schmid R, Berg G, Bahl H (2001) Purification and properties of two chitinolytic enzymes of Serratia plymuthica HRO-C48. Arch Microbiol 176:421–426

    Article  CAS  PubMed  Google Scholar 

  • Gaind S (2016) Phosphate dissolving fungi: mechanism and application in alleviation of salt stress in wheat. Microbiol Res 193:94–102

    Article  CAS  PubMed  Google Scholar 

  • Gao L, Kong F, Feng C, Wang J, Gao J, Shen G, Zhang C (2016) Isolation, characterization, and growth promotion of phosphate-solubilizing bacteria associated with Nicotiana tabacum (tobacco). Pol J Environ Stud 25:993–1003

    Article  CAS  Google Scholar 

  • Garcia-Lopez AM, Aviles M, Delgado A (2015) Plant uptake of phosphorus from sparingly available P-sources as affected by Trichoderma asperellum T34. Agric Food Sci 24:249–260

    Article  CAS  Google Scholar 

  • Gargova S, Roshkova Z, Vancheva G (1997) Screening of fungi for phytase production. Biotechnol Tech 11:221–224

    Article  CAS  Google Scholar 

  • Gaur AC (1990) Phosphate solubilizing microorganisms as biofertilizers. Omega Scientific Publishers, New Delhi, pp 149–151

    Google Scholar 

  • Gerretsen FC (1948) The influence of microorganisms on the phosphate intake by the plant. Plant Soil 1:51–81

    Article  CAS  Google Scholar 

  • Giri B, Kapoor R, Mukerji KG (2003) Influence of arbuscular mycorrhizal fungi and salinity on growth, biomass and mineral nutrition of Acacia auriculiformis. Biol Fertil Soils 38:170–175

    Article  Google Scholar 

  • Giri B, Kapoor R, Mukerji KG (2007) Improved tolerance of Acacia nilotica to salt stress by arbuscular mycorrhiza, Glomus fasciculatum, may be partly related to elevated K+/Na+ ratios in root and shoot tissues. Microb Ecol 54:753–760

    Article  CAS  PubMed  Google Scholar 

  • Gizaw B, Tsegay Z, Tefera G, Aynalem E, Wassie M, Abatneh E (2017) Phosphate solubilizing fungi isolated and characterized from teff rhizosphere soil collected from north Showa and Gojam, Ethiopia. J Fert Pest 8:1–9

    Google Scholar 

  • Goldstein AH (1986) Bacterial solubilization of mineral phosphates: historical perspective and future prospects. Am J Altern Agric 1:51–57

    Article  Google Scholar 

  • Goldstein AH, Liu ST (1987) Molecular cloning and regulation of a mineral phosphate solubilizing gene from Erwinia herbicola. Biotechnol 5:72–74

    CAS  Google Scholar 

  • Gong M, Tang C (2015) Cloning and expression of cellulosome-integrating protein from Aspergillus niger H1 improves phosphate solubilization. J Agric Sci 7:156–164

    Google Scholar 

  • Gong M, Du P, Liu X, Zhu C (2014a) An effective method for screening and testing the true phosphate-solubilizing fungus that enhances corn growth. J Agric Sci 6:60–70

    Google Scholar 

  • Gong M, Tang C, Zhu C (2014b) Cloning and expression of delta-1-pyrroline-5-carboxylate dehydrogenase in Escherichia coli DH5α improves phosphate solubilization. Can J Microbiol 60:1–5

    Article  CAS  Google Scholar 

  • Goswami D, Thakker JN, Dhandhukia PC (2016) Portraying mechanics of plant growth promoting rhizobacteria (PGPR): a review. Cogent Food Agric 2:1127500. https://doi.org/10.1080/23311932.2015.1127500

    Article  CAS  Google Scholar 

  • Grant C, Bittman S, Montreal M, Plenchette C, Morel C (2005) Soil and fertilizer phosphorus: effects on plant P supply and mycorrhizal development. Can J Plant Sci 85:3–14

    Article  Google Scholar 

  • Gugi B, Orange N, Hellio F, Burini JF, Guillou C, Leriche F, Guespin-Michel JF (1991) Effect of growth temperature on several exported enzyme activities in the psychrotropic bacterium Pseudomonas fluorescens. J Bacteriol 173:3814–3820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gulati A, Rahi P, Vyas P (2008) Characterization of phosphate-solubilizing fluorescent pseudomonads from the rhizosphere of seabuckthorn growing in the cold deserts of Himalayas. Curr Microbiol 56:73–79

    Article  CAS  PubMed  Google Scholar 

  • Gupta RP, Vyas MK, Pandher MS (1998) Role of phosphorus solubilizing microorganisms in P-economy and crop yield. In: Kaushik BD (ed) Soil plant microbe interaction in relation to nutrient management. Venus Printers & Publishers, New Delhi, pp 95–101

    Google Scholar 

  • Gusain YS, Kamal R, Mehta CM, Singh US, Sharma AK (2014) Phosphate solubilizing and indole-3-acetic acid producing bacteria from the soil of Garhwal Himalaya aimed to improve the growth of rice. J Environ Biol 36:301–307

    Google Scholar 

  • Hajiboland R, Aliasgharzad N, Barzeghar R (2009) Phosphorus mobilization and uptake in mycorrhizal rice (Oryza sativa L.) plants under flooded and non-flooded conditions. Acta Agric Slov 93:153–161

    Article  Google Scholar 

  • Halder AK, Mishra AK, Bhattacharyya P, Chakrabartty PK (1990) Solubilization of rock phosphate by Rhizobium and Bradyrhizobium. J Gen Appl Microbiol 36:81–92

    Article  CAS  Google Scholar 

  • Hamdali H, Moursalou K, Tchangbedji G, Ouhdouch Y, Hafidi M (2012) Isolation and characterization of rock phosphate solubilizing actinobacteria from a Togolese phosphatemine. Afr J Biotechnol 11:312–320

    CAS  Google Scholar 

  • Hameeda B, Harini G, Rupela OP, Wani SP, Reddy G (2008) Growth promotion of maize by phosphate-solubilizing bacteria isolated from composts and macrofauna. Microbiol Res 163:234–242

    Article  CAS  PubMed  Google Scholar 

  • Hwangbo H, Park RD, Kim YW, Rim YS, Park KH, Kim TH, Suh JS, Kim KY (2003) 2-ketogluconic acid production and phosphate solubilization by Enterobacter intermedium. Curr Microbiol 47:87–92

    Article  CAS  PubMed  Google Scholar 

  • Idriss EE, Makarewicz O, Farouk A, Rosner K, Greiner R, Bochow H, Richter H, Brriss R (2002) Extracellular phytase activity of Bacillus amyloliquefaciens FZB45 contributes to its plant-growth-promoting effect. Microbiology 148:2097–20109

    Article  CAS  PubMed  Google Scholar 

  • Imazu K, Tanaka S, Kuroda A, Anbe Y, Kato J, Ohtake H (1998) Enhanced utilization of phosphonate and phosphite by Klebsiella aerogenes. Appl Environ Microbiol 64:3754–3758

    CAS  PubMed  PubMed Central  Google Scholar 

  • Istina IN, Widiastuti H, Joy B, Antralina M (2015) Phosphate-solubilizing microbe from saprists peat soil and their potency to enhance oil palm growth and P uptake. Procedia Food Sci 3:426–435

    Article  Google Scholar 

  • Jain R, Saxena J, Sharma V (2017) The ability of two fungi to dissolve hardly soluble phosphates in solution. Mycology 8:104–110

    Article  CAS  Google Scholar 

  • Jansa J, Mozafar A, Frossard E (2005) Phosphorus acquisition strategies within arbuscular mycorrhizal fungal community of a single field site. Plant Soil 276:163–176

    Article  CAS  Google Scholar 

  • Jayawardhane S, Yapa N (2018) Potential of microbial solubilization of rock phosphate for use in sustainable agriculture: does biochar application enhance microbial solubilization? J Adv Microbiol 8:1–8

    Article  Google Scholar 

  • Jha A, Saxena J, Sharma V (2013) Investigation on phosphate solubilization potential of agricultural soil bacteria as affected by different phosphorus sources, temperature, salt, and pH. Commun Soil Sci Plant Anal 44:2443–2458

    Article  CAS  Google Scholar 

  • Jog R, Pandya M, Kumar GN, Rajkumar S (2014) Mechanism of phosphate solubilization and antifungal activity of Streptomyces spp. isolated from wheat roots and rhizosphere and their application in improving plant growth. Microbiology 160:778–788

    Article  CAS  PubMed  Google Scholar 

  • Jorquera MA, Hernandez MT, Rengel Z, Marschner P, de la Mora ML (2008) Isolation of culturable phosphobacteria with both phytate-mineralization and phosphate-solubilization activity from the rhizosphere of plants grown in a volcanic soil. Biol Fertil Soils 44:1025–1034

    Article  CAS  Google Scholar 

  • Kalsi HK, Singh R, Dhaliwal HS, Kumar V (2016) Phytases from Enterobacter and Serratia species with desirable characteristics for food and feed applications. 3 Biotech 6:64. https://doi.org/10.1007/s13205-016-0378-x

    Article  PubMed  PubMed Central  Google Scholar 

  • Kanes OS, Weckert MW, Kadam TA, Bhosale HJ (2015) Phosphate solubilization by stress-tolerant soil fungus Talaromyces funiculosus SLS8 isolated from the neem rhizosphere. Ann Microbiol 65:85–93

    Article  CAS  Google Scholar 

  • Kang J, Amoozegar A, Hesterberg D, Osmond DL (2011) Phosphorus leaching in a sandy soil as affected by organic and incomposted cattle manure. Geoderma 161:194–201

    Article  CAS  Google Scholar 

  • Kapri A, Tewari L (2010) Phosphate solubilization potential and phosphatase activity of rhizospheric Trichoderma spp. Braz J Microbiol 41:787–795

    Article  CAS  Google Scholar 

  • Kaviyarasi K, Kanimozhi K, Madhanraj P, Panneerselvam A, Ambikapathy V (2011) Isolation, identification and molecular characterization of phosphate solubilizing actinomycetes isolated from the coastal region of Manora, Thanjavur (Dt.). Asian J Pharm Tech 1:119–122

    Google Scholar 

  • Khan AA, Sinha AP, Rathi YPS (2005) Plant growth promoting activity of Trichoderma harzianum on rice seed germination and seedling vigour. Indian J Agric Res 39:256–262

    Google Scholar 

  • Khan AA, Jilani G, Akhtar MS, Naqvi SMS, Rasheed M (2009) Phosphorus solubilizing bacteria: occurrence, mechanisms and their role in crop production. J Agric Biol Sci 1:48–58

    Google Scholar 

  • Kim KY, Jordan D, Krishnan HB (1998) Expression of genes from Rahnella aquatilis that are necessary for mineral phosphate solubilizaiton in Escherichia coli. FEMS Microbiol Lett 159:121–127

    Article  CAS  PubMed  Google Scholar 

  • Kim CH, Han SH, Kim KY, Cho BH, Kim YH, Koo BS, Kim CY (2003) Cloning and expression of pyrroloquinoline quinone (PQQ) genes from a phosphate-solubilizing bacterium Enterobacter intermedium. Curr Microbiol 47:457–461

    CAS  PubMed  Google Scholar 

  • Kleinman PJA, Sharpley AN, Saporito LS, Buda AR, Bryant RB (2009) Application of manure to no-till soils: phosphorus losses by sub-surface and surface pathways. J Soil Water Conserv 84:215–227

    Google Scholar 

  • Krishnaraj PU, Goldstein AH (2001) Cloning of a Serratia marcescens DNA fragment that induces quinoprotein glucose dehydrogenase-mediated gluconic acid production in Escherichia coli in the presence of stationary phase Serratia marcescens. FEMS Microbiol Lett 205:215–220

    Article  CAS  PubMed  Google Scholar 

  • Kshetri L, Pandey P, Sharma GD (2017) Solubilization of inorganic rock phosphate by rhizobacteria of Allium hookeri thwaites and influence of carbon and nitrogen sources amendments. J Pure Appl Microbiol 11:1899–1908

    Article  CAS  Google Scholar 

  • Kucey RMN, Janzen HH, Legget ME (1989) Microbial mediated increases in plant-available phosphorus. Adv Agron 42:199–228

    Article  CAS  Google Scholar 

  • Kumar C, Yadav K, Archana G, Kumar GN (2013) 2-ketoglutonic acid secretion by incorporation of Pseudomonas putida KT 2440 gluconate dehydrogenase (gad) operon in Enterobacter asburiae PS13 improves mineral phosphate solubilization. Curr Microbiol 67:388–394

    Article  CAS  PubMed  Google Scholar 

  • Li L, Li SM, Sun JH, Zhou LL, Bao XG, Zhang HG, Zhang FS (2007) Diversity enhances agricultural productivity via rhizosphere phosphorus facilitation on phosphorus-deficient soils. PNAS 104:11192–11196

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Liu X, Hao T, Chen S (2017) Colonization and maize growth promotion induced by phosphate solubilizing bacterial isolates. Int J Mol Sci 18:1–16

    Google Scholar 

  • Lidbury IDEA, Murphy ARJ, Scanlan DJ, Bending GD, Jones AME, Moore JD, Goodall A, Hammond JP, Wellington EMH (2016) Comparative genomic, proteomic and exoproteomic analyses of three Pseudomonas strains reveals novel insights into the phosphorus scavenging capabilities of soil bacteria. Environ Microbiol 18:3535–3549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Linu MS, Stephen J, Jisha MS (2009) Phosphate solubilizing Gluconacetobacter sp. (MTCC 8368) and Burkholderia sp. (MTCC 8369) and their potential interaction with cowpea (Vigna unguiluiculata L. walp). Int J Agric Res 4:79–87

    Article  CAS  Google Scholar 

  • Liu ST, Lee LY, Tai CY, Hung CH, Chang YS, Wolfram JH, Rogers R, Goldstein AH (1992) Cloning of an Erwinia herbicola gene necessary for gluconic acid production and enhanced mineral phosphate solubilization in E. coli HB101: nucleotide sequence and probable involvement in biosynthesis of the coenzyme pyrroloquinoline quinone. J Bacteriol 174:5814–5819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu L, Li A, Chen J, Su Y, Li Y, Ma S (2018) Isolation of a phytase-producing bacterial strain from agricultural soil and its characterization and application as an effective eco-friendly phosphate solubilizing bioinoculant. Commun Soil Sci Plant Anal 49:984–994

    Article  CAS  Google Scholar 

  • Loganathan P, Nair S (2003) Crop specific endophytic colonization by a novel, salt-tolerent, nitrogen fixing and phosphate solubilizing Gluconacetobacter sp. from wild rice. Biotechnol Lett 25:497–501

    Article  CAS  PubMed  Google Scholar 

  • Lopez-Bucio J, Cruz-Ramirez A, Herrera-Estrella L (2003) The role of nutrient availability in regulating root architecture. Curr Opin Plant Biol 6:280–287

    Article  CAS  PubMed  Google Scholar 

  • Lu J, Gao XR, Dong ZM, An LJ (2012) Expression of mitochondrial malate dehydrogenase in Escherichia coli improves phosphate solubilization. Ann Microbiol 62:607–614

    Article  CAS  Google Scholar 

  • Mahmoud SAZ, Ramadan EM, Thabet FM, Khater T (1984) Production of plant growth promoting substances by rhizosphere microorganisms. Zentralbl Mikrobiol 139:227–232

    Article  Google Scholar 

  • Mandyal P, Kaushal R, Sharma K, Kaushal M (2012) Evaluation of native PGPR isolates in bell pepper for enhanced growth, yield and fruit quality. Int J Farm Sci 2:28–35

    Google Scholar 

  • Manwar AV, Khandelwal SR, Chaudhari BL, Meyer JM, Chincholkar SB (2004) Siderophore production by a marine Pseudomonas aeruginosa and its antagonistic action against phytopathogenic fungi. Appl Biochem Biotechnol 118:243–251

    Article  CAS  PubMed  Google Scholar 

  • Matos ADM, Gomes ICP, Nietsche S, Xavier AA, Gomes WS, dos santos Neto JA, MCT P (2017) Phosphate solubilization by endophytic bacteria isolated from banana trees. Ann Braz Acad Sci 89:2945–2954

    Article  CAS  Google Scholar 

  • Mazhar S, Hasnain S (2011) Screening of native plant growth promoting cyanobacteria and their impact on Triticum aestivum var. Uqab 2000 growth. Afr J Agric Res 6:3988–3993

    Google Scholar 

  • McGrath JW, Hammerschmidt F, Quinn J (1998) Biodegradation of phosphonomycin by Rhizobium huakuii PMY1. Appl Environ Microbiol 64:356–358

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mehta P, Walia A, Kakkar N, Shirkot CK (2014) Tricalcium phosphate solubilisation by new endophyte Bacillus methylotrophicus CKAM isolated from apple root endosphere and its plant growth-promoting activities. Acta Physiol Plant 36:2033–2045

    Article  CAS  Google Scholar 

  • Mehta P, Walia A, Kulshrestha S, Chauhan A, Shirkot CK (2015) Efficiency of plant growth-promoting P-solubilizing Bacillus circulans CB7 for enhancement of tomato growth under net house conditions. J Basic Microbiol 55:33–44

    Article  CAS  PubMed  Google Scholar 

  • Mishra BK, Meena K, Dubey PN, Bitla U (2016) Influence on yield and quality of fennel (Foeniculum vulgare Mill.) grown under semi-arid saline soil, due to application of native phosphate solubilizing rhizobacterial isolates. Ecol Eng 97:327–333

    Article  Google Scholar 

  • Mohamed HME, Shaieb FMA, EL-Komy HMA (2017) Solubilization of inorganic phosphates by isolated Azospirillum lipoferum (H3) as free or alginate immobilized inoculation. ContROL 1:1–7

    Google Scholar 

  • Mohamed EAH, Farag AG, Youssef SA (2018) Phosphate solubilization by Bacillus subtilis and Serratia marcescens isolated from tomato plant rhizosphere. J Environ Prot 9:266–277

    Article  CAS  Google Scholar 

  • Mondal S, Dutta S, Banerjee A, Banerjee S, Datta R, Roy P, Podder A, Roy R, Basu P, Dasgupta P, Saha D (2017) Production and application of phosphate solubilizing bacteria as biofertilizer: field trial at maize field, Uchalan, Burdwan District, West Bengal. Int J Environ Agric Res 3:1–9

    Google Scholar 

  • Nagarajkumar M, Bhaskaran R, Velazhahan R (2004) Involvement of secondary metabolites and extracellular lytic enzymes produced by Pseudomonas fluorescens in inhibition of Rhizoctonia solani. Microbiol Res 159:73–81

    Article  CAS  PubMed  Google Scholar 

  • Nannipieri P, Ascher J, Ceccherini MT, Landi L, Pietramellara G, Renella G (2003) Microbial diversity and soil functions. Eur J Soil Sci 54:655–670

    Article  Google Scholar 

  • Natesan R, Shanmugasundaram S (1989) Extracellular phosphate solubilization by the cyanobacterium Anabaena ARM310. J Biosci 14:203–208

    Article  CAS  Google Scholar 

  • Nenwani V, Doshi P, Saha T, Rajkumar S (2010) Isolation and characterization of a fungal isolate for phosphate solubilization and plant growth promoting activity. J Yeast Fungal Res 1:9–14

    CAS  Google Scholar 

  • Nico M, Ribaudo CM, Gori JI, Cantore ML, Cura JA (2012) Uptake of phosphate and promotion of vegetative growth in glucose-exuding rice plants (Oryza sativa) inoculated with plant growth-promoting bacteria. Appl Soil Ecol 61:190–195

    Article  Google Scholar 

  • Ostrowski M, Mazard S, Tetu SG, Phillippy K, Johnson A, Palenik B, Paulsen IT, Scanlan DJ (2010) PtrA is required for coordinate regulation of gene expression during phosphate stress in a marine Synechococcus. ISMEJ 4:908–921

    Article  CAS  Google Scholar 

  • Oteino N, Lally RD, Kiwanuka S, Lloyd A, Ryan D, Germaine KJ, Dowling DN (2015) Plant growth promotion induced by phosphate solubilizing endophytic Pseudomonas isolates. Front Microbiol 6:1–9

    Article  Google Scholar 

  • Pandey P, Maheshwari DK (2007) Two-species microbial consortium for growth promotion of Cajanus cajan. Curr Sci 92:1137–1142

    CAS  Google Scholar 

  • Parani K, Saha BK (2012) Prospects of using phosphate solubilizing Pseudomonas as biofertilizer. EJBS 4:40–44

    Google Scholar 

  • Patel S, Panchal B, Karmakar N, Rajkumar JS (2015) Solubilization of rock phosphate by two Rhizopus species isolated from coastal areas of south Gujar at and its effect on chickpea. Ecol Environ Conserv 21:229–237

    Google Scholar 

  • Paul D, Sinha SN (2017) Isolation and characterization of phosphate solubilizing bacterium Pseudomonas aeruginosa KUPSB12 with antibacterial potential from river Ganga, India. Ann Agrar Sci 15:130–136

    Article  Google Scholar 

  • Penrose DM, Glick BR (2003) Methods for isolating and characterizing ACC deaminase-containing plant growth-promoting rhizobacteria. Physiol Plant 18:10–15

    Article  Google Scholar 

  • Perez E, Sulbaran M, Ball MM, Yarzabal LA (2007) Isolation and characterization of mineral phosphate-solubilizing bacteria naturally colonizing a limonitic crust in the south-eastern Venezuelan region. Soil Biol Biochem 39:2905–2914

    Article  CAS  Google Scholar 

  • Pingale SS, Virkar PS (2013) Study of influence of phosphate dissolving micro-organisms on yield and phosphate uptake by crops. Euro J Exp Bio 3:191–193

    CAS  Google Scholar 

  • Plenchette C, Morel C (1996) External phosphorus requirement of mycorrhizal and non-mycorrhizal barley and soybean plants. Biol Fertil Soils 21:303–308

    Article  Google Scholar 

  • Putker F, Tommassen-van Boxtel R, Stork M, Rodriguez-Herva JJ, Koster M, Tommassen J (2013) The type II secretion system (Xcp) of Pseudomonas putida is active and involved in the secretion of phosphatases. Environ Microbiol 15:2658–2671

    CAS  PubMed  Google Scholar 

  • Raaijmakers JM, Vlami M, de Souza JT (2002) Antibiotic production by bacterial biocontrol agents. Antonie Van Leeuwenhoek 81:537–547

    Article  CAS  PubMed  Google Scholar 

  • Ramesh A, Sharma SK, Yadav N, Joshi OP (2014) Phosphorus mobilization from native soil P-pool upon inoculation with phytate-mineralizing and phosphate-solubilizing isolates for improved P-acqusition and growth of soybean and wheat crops in microcosm conditions. Agric Res 3:118–127

    Article  CAS  Google Scholar 

  • Rfaki A, Nassiri L, Ibijbijen J (2015) Isolation and characterization of phosphate solubilizing bacteria from the rhizosphere of faba bean (Vicia faba L.) in Meknes region, Morocco. Br Microbiol Res J 6:247–254

    Article  CAS  Google Scholar 

  • Ribeiro CM, Cardoso EJBN (2012) Isolation, selection and characterization of root associated growth promoting bacteria in Brazil pine (Araucaria angustifolia). Microbiol Res 167:69–78

    Article  CAS  PubMed  Google Scholar 

  • Richardson AE, Simpson RJ (2011) Soil microorganisms mediating phosphorus availability. Plant Physiol 156:989–996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Richardson AE, Hadobas PA, Hayes JE (2001) Extracellular secretion of Aspergillus phytase from Arabidopsis roots enables plants to obtain phosphorous from phytate. Plant J 25:641–649

    Article  CAS  PubMed  Google Scholar 

  • Richardson AE, Barea JM, McNeill AM, Prignent-Combaret C (2009) Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms. Plant Soil 321:305–339

    Article  CAS  Google Scholar 

  • Rinu K, Pandey A (2011) Slow and steady phosphate solubilization by a psychrotolerant strain of Paecilomyces hepiali (MTCC 9621). World J Microbiol Biotechnol 27:1055–1062

    Article  CAS  Google Scholar 

  • Rivaie AA, Loganathan P, Graham JD, Tillman RW, Payn TW (2008) Effect of phosphate rock and triple superphosphate on soil phosphorus fractions and their plant-availability and downward movement in two volcanic ash soils under Pinus radiate plantations in New Zealand. Nutr Cycl Agroecosyst 82:75–88

    Article  CAS  Google Scholar 

  • Roberts TL (2014) Cadmium and phosphorous fertilizers: the issues and the science. Procedia Eng 83:52–59

    Article  CAS  Google Scholar 

  • Rodriguez H, Fraga R (1999) Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol Adv 17:319–339

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez H, Gonzalez T, Selman G (2000) Expression of a mineral phosphate solubilizing gene from Erwinia herbicola in two rhizobacterial strains. J Biotechnol 84:155–161

    Article  CAS  Google Scholar 

  • Rodriguez H, Gonzalez T, Goire I, Bashan Y (2004) Gluconic acid production and phosphate solubilization by the plant growth-promoting bacterium Azospirillum spp. Naturwissenschaften 91:552–555

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez H, Fraga R, Gonzalez T, Bashan Y (2006) Genetics of phosphate solubilization and its potential applications for improving plant growth-promoting bacteria. Plant Soil 287:15–21

    Article  CAS  Google Scholar 

  • Rombola TH, Pedrinho EAN, de Macedo Lemos EG, Goncalves AM, dos Santos LFJ, Jr Pizauro JM (2014) Identification and enzymatic characterization of acid phosphatase from Burkholderia gladioli. BMC Res Notes 7:221. https://doi.org/10.1186/1756-0500-7-221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruangsanka S (2014) Identification of phosphate-solubilizing bacteria from the bamboo rhizosphere. Sci Asia 40:204–211

    Article  CAS  Google Scholar 

  • Rudresh DL, Shivaprakash MK, Prasad RD (2005) Tricalcium phosphate solubilizing abilities of Trichoderma spp. in relation to P uptake and growth and yield parameters of chickpea (Cicer arietinum L.). Can J Microbiol 51:217–222

    Article  CAS  PubMed  Google Scholar 

  • Saeid A, Prochownik E, Dobrowolska-Iwanek J (2018) Phosphorus solubilization by Bacillus species. Molecules 23:2897. https://doi.org/10.3390/molecules23112897

    Article  CAS  PubMed Central  Google Scholar 

  • Sagoe CI, Ando T, Kouno K, Nagaoka T (1998) Relative importance of protons and solution calcium concentration in phosphate rock dissolution by organic acids. Soil Sci Plant Nutr 44:617–625

    Article  Google Scholar 

  • Sakurai M, Wasaki J, Tomizawa Y, Shinano T, Osaki M (2008) Analysis of bacterial communities on alkaline phosphatase genes in soil supplied with organic matter. Soil Sci Plant Nutr 54:62–71

    Article  CAS  Google Scholar 

  • Sanjotha P, Mahantesh P, Patil CS (2011) Isolation and screening of efficiency of phosphate solubilizing microbes. Int J Microbiol Res 3:56–58

    Article  Google Scholar 

  • Santos-Beneit F (2015) The Pho regulon: a huge regulatory network in bacteria. Front Microbiol 6:402. https://doi.org/10.3389/fmicb.2015.00402

    Article  PubMed  PubMed Central  Google Scholar 

  • Sashidhar B, Podile AR (2009) Transgenic expression of glucose dehydrogenase in Azotobacter vinelandii enhances mineral phosphate solubilization and growth of sorghum seedlings. Microb Biotechnol 2:521–529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saxena J, Basu P, Jaligam V, Chandra S (2013) Phosphate solubilization by a few fungal strains belonging to the genera Aspergillus and Penicillium. Afr J Microbiol Res 7:4862–4869

    Article  CAS  Google Scholar 

  • Saxena J, Saini A, Ravi I, Chandra S, Garg V (2015) Consortium of phosphate-solubilizing bacteria and fungi for promotion of growth and yield of chickpea (Cicer arietinum). J Crop Improv 29:353–369

    Article  CAS  Google Scholar 

  • Schowanek D, Verstraete W (1990) Phosphonate utilization by bacterial cultures and enrichments from environmental samples. Appl Environ Microbiol 56:895–903

    CAS  PubMed  PubMed Central  Google Scholar 

  • Selvakumar G, Kundu S, Joshi P, Nazim S, Gupta AD, Gupta HS (2010) Growth promotion of wheat seedlings by Exiguobacterium acetylicum 1P (MTCC 8707) a cold tolerant bacterial strain from the Uttarakhand Himalayas. Indian J Microbiol 50:50–56

    Article  CAS  PubMed  Google Scholar 

  • Shahid M, Hameed S, Imran A, Ali S, van Elsas JD (2012) Root colonization and growth promotion of sunflower (Helianthus annuus L.) by phosphate solubilizing Enterobacter sp. Fs-11. World J Microbiol Biotechnol 28:2749–2758

    Article  CAS  PubMed  Google Scholar 

  • Sharifi M, Ghorbanli M, Ebrahimzadeh H (2007) Improved growth of salinity-stressed soybean after inoculation with pre-treated mycorrhizal fungi. J Plant Physiol 164:1144–1151

    Article  CAS  PubMed  Google Scholar 

  • Sharipova MR, Balaban NP, Mardanova AM, Nekhotyaeva NV, Dementyev AA, Vershinina OA, Garusov AV, Leschinskaya IB (1998) Isolation and properties of extracellular alkaline phosphatase from Bacillus intermedius. Biochem Mosc 63:1178–1182

    CAS  Google Scholar 

  • Sharma SB, Sayyed RZ, Trivedi MH, Gobi TA (2013) Phosphate solubilizing microbes: sustainable approach for managing phosphorus deficiency in agricultural soils. SpringerPlus 2:587–601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharon JA, Hathwaik LT, Glenn GM, Imam SH, Lee CC (2016) Isolation of efficient phosphate solubiling bacteria capable of enhancing tomato plant growth. J Soil Sci Plant Nutr 16:525–536

    CAS  Google Scholar 

  • Shen J, Yuan L, Zhang J, Li H, Bai Z, Chen X, Zhang W, Zhang F (2011) Phosphorus dynamics: from soil to plant. Plant Physiol 156:997–1005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shen YQ, Bonnot F, Imsand EM, Rose FJM, Sjolander K, Klinman JP (2012) Distribution and properties of the genes encoding the biosynthesis of the bacterial cofactor, pyrroloquinoline quinone. Biochemistry 51:2265–2275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shukla RM, Vyas RV (2014) Phosphate solubilizing efficiency of mycopesticides. IJAEB 7:705–710

    Article  Google Scholar 

  • Sibi G (2011) Role of phosphate solubilizing fungi during phosphocompost production and their effect on the growth of tomato (Lycopersicon esculentum L) plants. J Appl Nat Sci 3:287–290

    Article  Google Scholar 

  • Singh B, Satyanarayana T (2010) Plant growth promotion by an extracellular HAP-phytase of a thermophilic mold Sporotrichum thermophile. Appl Biochem Biotechnol 160:1267–1276

    Article  CAS  PubMed  Google Scholar 

  • Singh B, Satyanarayana T (2012) Production of phytate-hydrolyzing enzymes by thermophilic moulds. Afr J Biotechnol 11:12314–12324

    CAS  Google Scholar 

  • Singh P, Kumar V, Agrawal S (2014) Evaluation of phytase producing bacteria for their plant growth promoting activities. Int J Microbiol 2014:1–7

    Google Scholar 

  • Skrary FA, Cameron DC (1998) Purification and characterization of a Bacillus licheniformis phosphatase specific for D-alphaglycerphosphate. Arch Biochem Biophys 349:27–35

    Article  Google Scholar 

  • Sridevi M, Mallaiah KV (2009) Phosphate solubilizatin by Rhizobium strains. Indian J Microbiol 49:98–102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stephen J, Jisha MS (2011) Gluconic acid production as the principal mechanism of mineral phosphate solubilization by Burkholderia sp. (MTCC 8369). J Trop Agric 49:99–103

    CAS  Google Scholar 

  • Stephen J, Shabanamol S, Rishad KS, Jisha MS (2015) Growth enhancement of rice (Oryza sativa) by phosphate solubilizing Gluconacetobacter sp. (MTCC 8368) and Burkholderia sp. (MTCC 8369) under greenhouse conditions. 3 Biotech 5:831–837

    Article  PubMed  PubMed Central  Google Scholar 

  • Strobel BW (2001) Influence of vegetation on low-molecular-weight carboxylic acids in soil solution: a review. Geoderma 99:169–198

    Article  CAS  Google Scholar 

  • Swetha S, Padmavathi T (2016) Study of acid phosphatase in solubilization of inorganic phosphates by Piriformospora indica. Pol J Microbiol 65:407–412

    Article  Google Scholar 

  • Tahir M, Mirza MS, Zaheer A, Dimitrov MR, Smidt H, Hameed S (2013) Isolation and identification of phosphate solubilizer Azospirillum, Bacillus and Enterobacter strains by 16S rRNA sequence analysis and their effect on growth of wheat (Triticum aestivum L.). Aus J Crop Sci 7:1284–1292

    Google Scholar 

  • Takeda M, Knight JD (2006) Enhanced solubilization of rock phosphate by Penicillium bilaiae in pH-buffered solution culture. Can J Microbiol 52:1121–1129

    Article  CAS  PubMed  Google Scholar 

  • Trivedi P, Sa T (2008) Pseudomonas corrugata (NRRL B-30409) mutants increased phosphate solubilization, organic acid production, and plant growth at lower temperatures. Curr Microbiol 56:140–144

    Article  CAS  PubMed  Google Scholar 

  • Ullah I, Khan AR, Park GS, Lim JH, Waqas M, Lee IJ, Shin JH (2013) Analysis of phytohormones and phosphate solubilization in Photorhabdus spp. Food Sci Biotechnol 22:25–31

    Article  CAS  Google Scholar 

  • Vassilev N, Eichler-Lobermann B, Vassileva M (2012) Stress-tolerant P-solubilizing microorganisms. Appl Microbiol Biotechnol 95:851–859

    Article  CAS  PubMed  Google Scholar 

  • Vassileva M, Azcon R, Barea JM, Vassilev N (2000) Rock phosphate solubilization by free and encapsulated cells of Yarrowia lipolytica. Process Biochem 35:693–697

    Article  CAS  Google Scholar 

  • Vazquez P, Holguin G, Puente M, Elopez CA, Bashan Y (2000) Phosphate solubilizing microorganisms associated with the rhizosphere of mangroves in a semi arid coastal lagoon. Biol Fertil Soils 30:460–468

    Article  CAS  Google Scholar 

  • Viruel E, Erazzu LE, Calsina LM, Ferrero MA, Lucca ME, Sineriz F (2014) Inoculation of maize with phosphate solubilizing bacteria: effect on plant growth and yield. J Soil Sci Plant Nutr 14:819–831

    CAS  Google Scholar 

  • Vitorino LC, Silva FG, Soares MA, Souchie EL, Costa AC (2012) Solubilization of calcium and iron phosphate and in vitro production of indoleacetic acid by endophytic isolates of Hyptis marrubioides Epling (Lamiaceae). Int Res J Biotechnol 3:47–54

    Google Scholar 

  • Vyas P, Gulati A (2009) Organic acid production in vitro and plant growth promotion in maize under controlled environment by phosphate-solubilizing fluorescent Pseudomonas. BMC Microbiol 9:174. https://doi.org/10.1186/1471-2180-9-174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wagh J, Shah S, Bhandari P, Archana G, Kumar GN (2014) Heterologous expression of pyrroloquinoline quinone (pqq) gene cluster confers mineral phosphate solubilization ability to Herbaspirillum seropedicae Z67. Appl Microbiol Biotechnol 98:5117–5129

    Article  CAS  PubMed  Google Scholar 

  • Walpola BC, Yoon MH (2013) Phosphate solubilizing bacteria: assessment of their effect on growth promotion and phosphorous uptake of mung bean (Vigna radiata [L.] R. Wilczek). Chilean J Agric Res 73:275–281

    Article  Google Scholar 

  • Wang X, Wang C, Sui J, Liu Z, Li Q, Ji C, Song X, Hu Y, Wang C, Sa R, Zhang J, Du J, Liu X (2018) Isolation and characterization of phosphofungi, and screening of their plant growth-promoting activities. AMB Express 8:63. https://doi.org/10.1186/s13568-018-0593-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Widada J, Damarjaya DI, Kabirun S (2007) The interactive effects of arbuscular mycorrhizal fungi and rhizobacteria on the growth and nutrients uptake of sorghum in acid soil. In: Velazquez E, Rodriguez-Barrueco C (eds) Developments in plant and soil sciences: first international meeting on microbial phosphate solubilization. Springer, Salamanca, pp 173–177

    Chapter  Google Scholar 

  • Widawati S (2011) Diversity and phosphate solubilization by bacteria isolated from Laki island coastal ecosystem. Biodiversitas 12:17–21

    Article  Google Scholar 

  • Xiao C, Chi R, He H, Qui G, Wang D, Zhang W (2009) Isolation of phosphate-solubilizing fungi from phosphate mines and their effect on wheat seedling growth. Appl Biochem Biotechnol 159:330–342

    Article  CAS  PubMed  Google Scholar 

  • Xueming Z, Zhenping H, Yu Z, Huanshi Z, Pei Q (2014) Arbuscular mycorrhizal fungi (AMF) and phosphate-solubilizing fungus (PSF) on tolerance of beach plum (Prunus maritima) under salt stress. Aust J Crop Sci 8:945–950

    Google Scholar 

  • Yadav BK, Tarafdar JC (2007) Ability of Emericella rugulosa to mobilize unavailable P compounds during pearl millet [Pennisetum glaucum (L.) R. Br.] crop under arid condition. Indian J Microbiol 47:57–63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yadav BK, Tarafdar JC (2011) Penicillium purpurogenum, unique P mobilizers in arid agro-ecosystems. Arid Land Res Manag 25:87–99

    Article  CAS  Google Scholar 

  • Yadav V, Kumar M, Deep DK, Kumar H, Sharma R, Tripathi T, Tuteja N, Saxena AK, Johri AK (2010) A phosphate transporter from the root endophytic fungus Piriformospora indica plays a role in phosphate transport to host plant. J Biol Chem 285:26532–26544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamanaka T, Li CY, Bormann BT, Okabe H (2003) Tripartite associations in an alder: effects of Frankia and Alpova diplophloeus on the growth, nitrogen fixation and mineral acquisition of Alnus tenuifolia. Plant Soil 254:179–186

    Article  CAS  Google Scholar 

  • Yang XP, Zhong GF, Lin JP, Mao DB, Wei DZ (2010) Pyrroloquinoline quinone biosynthesis in Escherichia coli through expression of the Gluconobacter oxydans pqqABCDE gene cluster. J Ind Microbiol Biotechnol 37:575–580

    Article  CAS  PubMed  Google Scholar 

  • Zheng BX, Ibrahim M, Zhang DP, Bi QF, Li HZ, Zhou GW, Ding K, Penuelas J, Zhu YG, Yang XR (2018) Identification and characterization of inorganic-phosphate-solubilizing bacteria from agricultural fields with a rapid isolation method. AMB Express 8:47. https://doi.org/10.1186/s13568-018-0575-6

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhou K, Binkley D, Doxtader KG (1992) A new method for estimating gross phosphorus mineralization and immobilization rates in soils. Plant Soil 147:243–250

    Article  Google Scholar 

  • Zhu F, Qu L, Hong X, Sun X (2011) Isolation and characterization of a phosphate-solubilizing halophilic bacterium Kushneria sp. YCWA18 from Daqiao saltern on the coast of Yellow Sea of China. Evid Based Complement Alternat Med 2011:1–6

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bhawna Dipta.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dipta, B., Bhardwaj, S., Kaushal, M. et al. Obliteration of phosphorus deficiency in plants by microbial interceded approach. Symbiosis 78, 163–176 (2019). https://doi.org/10.1007/s13199-019-00600-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13199-019-00600-y

Keywords

Navigation