Skip to main content
Log in

Effects of Epichloë sinica on Roegneria kamoji seedling physiology under PEG-6000 simulated drought stress

  • Published:
Symbiosis Aims and scope Submit manuscript

Abstract

Some Epichloë species are beneficial to their plant hosts by improving fitness and resistance to stress. The natural, seedborne, asymptomatic symbiotic endophyte Epichloë sinica is specific for Roegneria spp., which are perennial grasses found in grasslands or meadows; many species of Roegneria are excellent forage plants. This study was designed to reveal the biological function of E. sinica via seedling assays with drought simulation using polyethylene glycol (PEG)-6000. Endophyte infected (EI) and endophyte free (EF) R. kamoji seeds (obtained by heat treatment) were germinated and grown on 0, 10, 15 and 20% PEG-6000 for 10 days; seedling and root system morphologies were investigated, and reactive oxygen species (ROS), which act as signaling molecules in plant responses to abiotic stress, were detected. E. sinica enhanced both the germination potential and rate of R. kamoji seeds treated with high concentrations of PEG-6000. After PEG treatment, shoot and root morphologies differed significantly between EF and EI seedlings. Additionally, lower amounts of ROS concentration were detected in the leaves of EI seedlings treated with high concentrations of PEG-6000. In conclusion, E. sinica promoted PEG-6000 simulated drought stress resistance in R. kamoji seedlings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Anjum NA, Sharma P, Gill SS et al (2016) Catalase and ascorbate peroxidase-representative H2O2-detoxifying heme enzymes in plants. Environ Sci Pollut Res 23:19002–19029

  • Bacon CW, White Jr JF (1994) Stains, media, and procedures for analyzing endophytes. In: Biotechnology of endophytic fungi of grasses, CRC Press, pp 47–56

  • Baum BR, Yen C, Yang JL (1991) Roegneria: its generic limits and justification for its recognition. Can J Bot 69:282–294

    Google Scholar 

  • Bohnert H, Shen B (1999) Transformation and compatible solutes. Sci Hortic 78:237–260

    Google Scholar 

  • Cai LB (1997) A taxonomical study on the genus Roegneria C. Koch from China (in Chinese). Acta Phytotaxon Sin 35:148–177

  • Chen H, Jiang JG (2010) Osmotic adjustment and plant adaptation to environmental changes related to drought and salinity. Environ Rev 18:309–319

    Google Scholar 

  • Cheng FF, Gao L, Jiang LF et al (2013) Grass endophyte researches 16: effects of endophyte Neotyphodium sinicum on botanical characters of its host Roegneria kamoji (in Chinese). JNAU 36:52–58

  • Clark LJ, Price AH, Steele KA et al (2008) Evidence from near-isogenic lines that root penetration increases with root diameter and bending stiffness in rice. Funct Plant Biol 35:1163–1171

    Google Scholar 

  • Duan B, Yang Y, Lu Y et al (2007) Interactions between water deficit, ABA, and provenances in Picea asperata. J Exp Bot 58:3025–3036

    CAS  PubMed  Google Scholar 

  • Fryer MJ, Oxborough K, Mullineaux PM et al (2002) Imaging of photo-oxidative stress responses in leaves. J Exp Bot 53:1249–1254

    CAS  PubMed  Google Scholar 

  • Gao L (2012) Elimination of fungal endophytes from Roegneria kamoji (in Chinese). Dissertation, Nanjing Agricultural University

  • Gontia-Mishra I, Sapre S, Sharma A et al (2016) Amelioration of drought tolerance in wheat by the interaction of plant growth-promoting rhizobacteria. Plant Biol 18:992–1000

    CAS  PubMed  Google Scholar 

  • Gundel PE, Maseda PH, Vila-Aiub MM et al (2006) Effects of Neotyphodium fungi on Lolium multiflorum seed germination in relation to water availability. Ann Bot 97:571–577

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gundel PE, Zabalgogeazcoa I, Vazquez de Aldana BR (2011) Interaction between plant genotype and the symbiosis with Epichloë fungal endophytes in seeds of red fescue (Festuca rubra). Crop Pasture Sci 62:1010–1016

  • Hesse U, Schoberlein W, Wittenmayer L et al (2005) Influence of water supply and endophyte infection (Neotyphodium spp.) on vegetative and reproductive growth of two Lolium perenne L. genotypes. Eur J Agron 22:45–54

    Google Scholar 

  • Hosseini F, Mosaddeghi MR, Hajabbasi MA et al (2016) Role of fungal endophyte of tall fescue (Epichloë coenophiala) on water availability, wilting point and integral energy in texturally-different soils. Agric Water Manag 163:197–211

    Google Scholar 

  • Hu XL, Jiang MY, Zhang JH et al (2007) Calcium-calmodulin is required for abscisic acid-induced antioxidant defense and functions both upstream and downstream of H2O2 production in leaves of maize (Zea mays) plants. New Phytol 173:27–38

    CAS  PubMed  Google Scholar 

  • Kang Y, Ji YL, Sun XH et al (2009) Taxonomy of Neotyphodium endophytes of Chinese native Roegneria plants. Mycologia 101:211–219

    CAS  Google Scholar 

  • Kaufmann MR, Eckard AN (1971) Evaluation of water stress control with polyethylene glycols by analysis of guttation. Plant Physiol 47:453–456

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kauppinen M, Saikkonen K, Helander M et al (2016) Epichloë grass endophytes in sustainable agriculture. Nat Plants 2:15224

    PubMed  Google Scholar 

  • Kong LN, Song XY, Xiao J et al (2018) Development and characterization of a complete set of Triticum aestivum-Roegneria ciliaris disomic addition lines. Theor Appl Genet 131:1793–1806

    CAS  PubMed  Google Scholar 

  • Leuchtmann A, Bacon CW, Schardl CL et al (2014) Nomenclatural realignment of Neotyphodium species with genus Epicholë. Mycologia 106:202–215

    CAS  PubMed  Google Scholar 

  • Li W, Ji YL, Yu HS et al (2006) A new species of Epichloë symbiotic with Chinese grasses. Mycologia 98:560–570

    CAS  PubMed  Google Scholar 

  • Liu CH, Lou LQ, Deng JX et al (2016) Morph-physiological responses of two switchgrass (Panicum virgatum L.) cultivars to cadmium stress. Grassl Sci 62:92–101

    CAS  Google Scholar 

  • Malamy JE (2005) Intrinsic and environmental response pathways that regulate root system architecture. Plant Cell Environ 28:67–77

    CAS  Google Scholar 

  • Malinowski DP, Belesky DP (2000) Adaptations of endophyte-infected cool-season grasses to environmental stresses: mechanisms of drought and mineral stress tolerance. Crop Sci 40:923–940

    CAS  Google Scholar 

  • Malinowski DP, Alloush GA, Belesky DP (1998) Evidence for chemical changes on the root surface of tall fescue in response to infection with the fungal endophyte Neotyphodium coenophialum. Plant Soil 205:1–12

  • Manschadi AM, Christopher J, Devoil P et al (2006) The role of root architectural traits in adaptation of wheat to water-limited environments. Funct Plant Biol 33:823–837

    CAS  Google Scholar 

  • Mayer AM (1986) How do seeds sense their environment? Some biochemical aspects of the sensing of water potential, light and temperature. Isr J Bot 35:3–16

    CAS  Google Scholar 

  • McCormack ML, Dickie IA, Eissenstat DM et al (2015) Redefining fine roots improves understanding of below-ground contributions to terrestrial biosphere processes. New Phytol 207:505–518

    PubMed  Google Scholar 

  • Narayanan S, Mohan A, Gill KS et al (2014) Variability of root traits in spring wheat germplasm. PLoS One 9:e100317

    PubMed  PubMed Central  Google Scholar 

  • Neil KL, Tiller RL, Faeth SH (2003) Big sacaton and endophyte-infected Arizona fescue germination under water stress. J Range Manag 56:616–622

  • Oberhofer M, Güsewell S, Leuchtmann A (2014) Effects of natural hybrid and non-hybrid Epichloë endophytes on the response of Hordelymus europaeus to drought stress. New Phytol 201:242–253

    PubMed  Google Scholar 

  • Omacini M, Semmartin M, Pérez LI et al (2012) Grass–endophyte symbiosis: a neglected aboveground interaction with multiple belowground consequences. Appl Soil Ecol 61:273–279

    Google Scholar 

  • Orozco-Cardenas M, Ryan CA (1999) Hydrogen peroxide is generated systemically in plant leaves by wounding and systemin via the octadecanoid pathway. Proc Natl Acad Sci USA 96:6553–6557

    CAS  Google Scholar 

  • Nagabhyru P, Dinkins RD, Wood CL et al (2013) Tall fescue endophyte effects on tolerance to water-deficit stress. BMC Plant Biol 13:127

    PubMed  PubMed Central  Google Scholar 

  • Peng QQ, Li CJ, Song ML et al (2013) Effects of seed hydropriming on growth of Festuca sinensis infected with Neotyphodium endophyte. Fungal Ecol 6:83–91

    Google Scholar 

  • Ravel C, Courty C, Coudret A et al (1997) Beneficial effects of Neotyphodium lolii on the growth and the water status in perennial ryegrass cultivated under nitrogen deficiency or drought stress. Agronomie 17:173–181

    Google Scholar 

  • Ren AZ, Li X, Han R et al (2011) Benefits of a symbiotic association with endophytic fungi are subject to water and nutrient availability in Achnatherum sibiricum. Plant Soil 346:363–373

    CAS  Google Scholar 

  • Ren AZ, Wei MY, Yin LY et al (2014) Benefits of a fungal endophyte in Leymus chinensis depend more on water than on nutrient availability. Environ Exp Bot 108:71–78

    CAS  Google Scholar 

  • Rodriguez R, Redman R (2005) Balancing the generation and elimination of reactive oxygen species. Proc Natl Acad Sci USA 102:3175–3176

    CAS  Google Scholar 

  • Sairam RK, Saxena DC (2000) Oxidative stress and antioxidants in wheat genotypes: possible mechanism of water stress tolerance. J Agron Crop Sci 184:55–61

    CAS  Google Scholar 

  • Schardl CL, Leuchtmann A, Spiering MJ (2004) Symbioses of grasses with seedborne fungal endophytes. Annu Rev Plant Biol 55:315–340

    CAS  PubMed  Google Scholar 

  • Schardl CL, Scott B, Florea S et al (2009) Epichloë endophytes: Clavicipitaceous symbionts of grasses. In: Deising HB (eds) Plant relationships. The Mycota V. Springer, Berlin, pp 275–306

  • Song H, Nan ZB, Song QY et al (2016) Advances in research on Epichloë endophytes in Chinese native grasses. Front Microbiol 7:1399

    PubMed  PubMed Central  Google Scholar 

  • Vázquez de Aldana BR, Gundel PE, García Criado B et al (2013) Germination response of endophytic Festuca rubra seeds in the presence of arsenic. Grass Forage Sci 69:462–469

    Google Scholar 

  • Wang ZW, Wang SM, Ji YL et al (2005) Plant endophyte research 6: detection and distribution of endophytic fungus in gramineous plants in saline alkali area in Dongying (In Chinese). Pratacultural Sci 22:60–64 

  • Wang WB, Kim YH, Lee HS et al (2009) Analysis of antioxidant enzyme activity during germination of alfalfa under salt and drought stresses. Plant Physiol Biochem 47:570–577

    CAS  PubMed  Google Scholar 

  • Wei LT, Wang LN, Yang Y et al (2015) Abscisic acid enhances tolerance of wheat seedlings to drought and regulates transcript levels of genes encoding ascorbate-glutathione biosynthesis. Front Plant Sci 6:458

  • Zhang YP, Nan ZB (2007) Growth and anti-oxidative systems changes in Elymus dahuricus is affected by Neotyphodium endophyte under contrasting water availability. J Agron Crop Sci 193:377–386

    CAS  Google Scholar 

  • Zhang YP, Nan ZB (2010) Germination and seedling anti-oxidative enzymes of endophyte infected populations of Elymus dahuricus under osmotic stress. Seed Sci Technol 38:522–527

    Google Scholar 

  • Zhang XX, Fan XM, Li CJ et al (2010) Effects of cadmium stress on seed germination, seedling growth and antioxidative enzymes in Achnatherum inebrians plants infected with a Neotyphodium endophyte. Plant Growth Regul 60:91–97

    CAS  Google Scholar 

  • Zhang XX, Li CJ, Nan ZB (2012a) Effects of cadmium stress on seed germination and seedling growth of Elymus dahuricus infected with the Neotyphodium endophyte. Sci China Life Sci 55:793–799

    CAS  PubMed  Google Scholar 

  • Zhang XX, Li CJ, Nan ZB et al (2012b) Neotyphodium endophyte increases Achnatherum inebrians (drunken horse grass) resistance to herbivores and seed predators. Weed Res 52:70–78

    Google Scholar 

  • Zhou LY, Li CJ, Zhang XX et al (2015) Effects of cold shocked Epichloë infected Festuca sinensis on ergot alkaloid accumulation. Fungal Ecol 14:99–104

    Google Scholar 

Download references

Acknowledgments

We thank Prof Q. S. Cai for providing experimental equipment. We thank J. H. Xu and many other collaborators for data measurements. This research was fully supported by National Natural Science Foundation of China (No. 31372365, 30970081, 30800156).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yanling Ji or Hanshou Yu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bu, Y., Guo, P., Ji, Y. et al. Effects of Epichloë sinica on Roegneria kamoji seedling physiology under PEG-6000 simulated drought stress. Symbiosis 77, 123–132 (2019). https://doi.org/10.1007/s13199-018-0570-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13199-018-0570-3

Keywords

Navigation