Symbiosis

pp 1–14 | Cite as

Serpulids on living Eocene larger foraminifer Discocyclina

Article
  • 27 Downloads

Abstract

I report the first observation of the symbiotic relationship between a serpulid polychaete and a larger foraminifer, Discocyclina, from the Eocene of the Ebro Basin (NE Spain). Discocyclina tests are the larger and most abundant element of the fossil assemblage in a limestone bed within a fan delta series, and seems to be a preferred substrate by the serpulid larvae to settle. The bioimmuration of the serpulid tube within the foraminiferal test shows that the polychaetes attached and grew on living foraminifers, which continued growing after the serpulid’s death. The foraminifer could benefit from the filtering activity of the serpulid, although in some cases the serpulid attachment caused an anomalous growth of the foraminiferal test. Some foraminifer individuals survived to two, possibly three successive episodes of serpulid attachment, which suggests a life span of 1–3 years for this Discocyclina species, similar to that of recent hyaline larger foraminifers such as Amphistegina or Paleonummulites. This sheds new light on the paleobiology of this type of larger foraminifers without recent counterparts that thrieved during Late Cretaceous and Paleogene times.

Keywords

Symbiosis Serpulids Discocyclina Larger foraminifera Eocene Ebro Basin 

Notes

Acknowledgements

This is a contribution to the Research Group 2017 SGR 824, “Geologia Sedimentària”, (Generalitat de Catalunya), and the I + D + i Project CGL2015-69805-P BIOGEOEVENTS (MINECO, FEDER, EU).

References

  1. Abad A (2001) Paleotaxodonta y Pteriomorphia del Eoceno del margen sur de la depresión Central Catalana. Dissertation, Universitat Autònoma de Barcelona. http://www.tdx.cat/handle/10803/3432
  2. Alexander SP, DeLaca TE (1987) Feeding adaptation of the foraminiferan Cibicides refulgens living epizoically and parasitically on the Antarctic scallop Adamussium colbecki. Biol Bull 173:136–159CrossRefPubMedGoogle Scholar
  3. Amao AO, Kaminski MA, Frontalini F (2016) Morphological abnormalities in benthic foraminifera caused by an attached epibiont foraminifer. J Micropalaeontol 35:173–178CrossRefGoogle Scholar
  4. Andrew C, Howe P, Paul CRC, Donovan SK (2011) Epifaunal worm tubes on lower Jurassic (lower Lias) ammonites from Dorset. P Geologist Assoc 122:34–46CrossRefGoogle Scholar
  5. Astibia H, Payros A, Ortiz S, Elorza J, Álvarez-Pérez G, Badiola A, Bardet N, Berreteaga A, Bitner MA, Calzada S, Corral JC, Díaz-Martínez I, Merle D, Pacaud J-M, Pereda-Suberbiola X, Pisera A, Rodríguez-Tovar FJ, Tosquella J (2016) Fossil associations from the middle and upper Eocene strata of the Pamplona Basin and surrounding areas (Navarre, western Pyrenees). J Iber Geol 42:7–28CrossRefGoogle Scholar
  6. Barnolas A (1992) Evolución sedimentaria de la Cuenca Surpirenaica Oriental durante el Eoceno. Acta Geol Hisp 27:15–31Google Scholar
  7. Baumfalk YA, Fortuin AR, Mok RP (1982) Talpinella cunicularia n. gen., n. sp., a possible foraminiferal parasite of late Cretaceous Orbitoides. J Foraminifer Res 12:185–196CrossRefGoogle Scholar
  8. Berning B, Reuter M, Piller WE, Harzhauser M, Kroh A (2009) Larger foraminifera as a substratum for encrusting bryozoans (late Oligocene, Tethyan seaway, Iran). Facies 55:227–241.  https://doi.org/10.1007/s10347-008-0169-x CrossRefGoogle Scholar
  9. Berry W (1931) Deformed orbitoids. Eclogae Geol Helv 24:159–163Google Scholar
  10. Briguglio A, Hohenegger J (2014) Growth oscillation in larger foraminifera. Paleobiology 40:494–509CrossRefPubMedPubMedCentralGoogle Scholar
  11. Busquets P, Vilaplana M (1986) Cycloseris barcelonensis (OPPENHEIM, 1911) del Eoceno de Igualada: precisiones estratigráficas, paleoambientales y paleontológicas. Paleontologia i Evolució 20:99–106Google Scholar
  12. Carrasco JF (1994) El género Spondylus en el Eoceno del noreste de la península Ibérica. Scripta Musei Geologi Seminarii Barcinonensis 226:1–21Google Scholar
  13. Costa E, Garcés M, López-Blanco M, Beamud E, Gómez-Paccard M, Cruz Larrasoaña J (2010) Closing and continentalization of the south Pyrenean foreland basin (NE Spain): magnetochronological constraints. Basin Res 22:904–917Google Scholar
  14. DeVantier LM, Reichelt RE, Bradbury RH (1986) Does Spirobranchus giganteus protect host Porites from predation Acanthaster planci: predator pressure as a mechanism of coevolution? Mar Ecol Prog Ser 32:307–310CrossRefGoogle Scholar
  15. Ferràndez-Cañadell C (1989) Estudio de la morfología en ‘silla de montar’ en Discocyclina. V Jornadas de Paleontología, El Estudio de la Forma Orgánica y Thethys Cretaceous Correlation (Project 262). Servei de Publicacions de la Universitat de València, p. 47–48Google Scholar
  16. Ferràndez-Cañadell C (1998) An asterigerinacean origin for Orbitoclypeus and Asterocyclina (Orbitoclypeidae, foraminifera). J Foraminifer Res 28:135–140Google Scholar
  17. Ferràndez-Cañadell C (1999) Morfostructura i Paleobiologia dels ortofragminids de la Mesogea. Publicaciones de l'Institut d'Estudis Catalans, Arxius de les Seccions de Ciències, 339 pp [In Catalan, with extended English abstract of 42 pp.]Google Scholar
  18. Ferràndez-Cañadell C (2002) Multicellular-like compartmentalisation of cytoplast in fossil larger foraminifera. Lethaia 35:121–130.  https://doi.org/10.1111/j.1502-3931.2002.tb00073.x CrossRefGoogle Scholar
  19. Ferràndez-Cañadell C, Serra-Kiel J (1992) Morphostructure and Paleobiology of Discocyclina Gümbel, 1870. J Foraminifer Res 22:147–165CrossRefGoogle Scholar
  20. Ferràndez-Cañadell C, Serra-Kiel J (1995) Camarillas laterales en los ortofragmínidos: Morfoestructura, arquitectura y funcionalidad. Rev Esp Paleontol, Spec Vol in honor of Dr. Guillem Colom:129–134Google Scholar
  21. Ferrer J (1971) El Paleoceno y Eoceno del borde Sur-oriental de la depresión del Ebro. Schweiz palaeontol Abh 90:1–70Google Scholar
  22. Floros CD, Samways MJ, Armstrong B (2005) Polychaete (Spirobranchus giganteus) loading on south African corals. Aquat Conserv Mar Freshwat Ecosyst 15:289–298CrossRefGoogle Scholar
  23. Garberoglio RM, Lazo DG (2011) Post-mortem and symbiotic sabellid and serpulid-coral associations from the Lower Cretaceous of Argentina. Rev bras paleontol 14:215–228CrossRefGoogle Scholar
  24. Gebhardt H, Ćorić S, Darga R, Briguglio A, Schenk B, Werner W, Andersen N, Sames B (2013) Middle to late Eocene paleoenvironmental changes in a marine transgressive sequence from the northern Tethyan margin (Adelholzen, Germany). Aust J Earth Sci 106:45–72Google Scholar
  25. Ghobashy AFA, Selim SA (1979) Settlement and growth of Spirorbis corrugatus (Montagu) in the eastern harbour of Alexandria. Bull Natl Inst Oceanogr Fish (Egypt) 6:317–330Google Scholar
  26. Goldstein ST (2002) Foraminifera: a biological overview. In: Sen Gupta BK (ed) (2003). Modern Foraminifera. Kluwer Academic Publishers, New YorkGoogle Scholar
  27. Gormüs M, Nielsen JK (2006) Borings in larger benthic foraminifers from Turkey and their paleoenvironmental significance. J Foraminifer Res 36:152–165CrossRefGoogle Scholar
  28. Grave BH (1933) Rate of growth, age of sexual maturity, and duration of life of certain sessile organisms, at woods hole, Massachusetts. Biol Bull 65:375–386CrossRefGoogle Scholar
  29. Hallock P (1985) Why are larger foraminifera large? Paleobiology 11:195–208CrossRefGoogle Scholar
  30. Hartmann-Schröder G (1983) Zur Kenntnis einiger Foraminiferengehäuse bewohnender Polychaeten aus dem Nordostatlantik. Mitt Hambg Zool Mus Inst 80:169–176Google Scholar
  31. Hohenegger J (2011) Large foraminifera. Greenhouse constructions and gardeners in the oceanic microcosm. The Kagoshima University Museum Bull 5:1–86Google Scholar
  32. Ippolitov AP, Vinn O, Kupriyanova EK, Jäger M (2014) Written in stone: history of serpulid polychaetes through time. Mem Mus Vic 71:123–159CrossRefGoogle Scholar
  33. Jäger M (2012) Sabellids and serpulids (Polychaeta sedentaria) from the type Maastrichtian, the Netherlands and Belgium. Scripta Geol Spec 8:45–81 http://repository.naturalis.nl/document/455816 Google Scholar
  34. Kazmierczak J (1973) Tolypammina vagans (Foraminiferida) as inhabitant of the Oxfordian siliceous sponges. Acta Palaeontol Pol 18:95–109Google Scholar
  35. Kinoshita S, Eder W, Wöger J, Hohenegger J, Briguglio A (2017) Growth, chamber building rate and reproduction time of Palaeonummulites venosus (foraminifera) under natural conditions. Coral Reefs 36:1097–1109.  https://doi.org/10.1007/s00338-017-1601-x CrossRefGoogle Scholar
  36. Kupriyanova EK, Nishi E, Hove HA ten, Rzhavsky AV (2001) Life-history patterns in serpulimorph polychaetes: ecological and evolutionary perspectives. Oceanogr Mar Biol Annu Rev 39:1–101Google Scholar
  37. Langer MR, Bagi H (1994) Tubicolous polychaetes as substrates for benthic foraminifera. J Micropalaeontol 13:132CrossRefGoogle Scholar
  38. Langer MR, Bell CJ, (1995) Toxic foraminifera: innocent until proven guilty. Mar Micropaleontol 24(3-4):205–214CrossRefGoogle Scholar
  39. Langer MR, Long DJ (1994) Associations of benthic foraminifera with a gammarid amphipod on tidal flats of San Francisco Bay, California. J Coast Res 10:877–883Google Scholar
  40. Lee JJ, Hallock P (1987) Algal symbiosis as a driving force in the evolution of larger foraminifera. Ann N Y Acad Sci 503:330–347CrossRefGoogle Scholar
  41. Leutenegger S (1984) Symbiosis in benthic foraminifera: specificity and host adaptation. J Foraminifer Res 14:16–35CrossRefGoogle Scholar
  42. Luci L, Garberoglio RM, Lazo G (2013) Serpulids and other calcareous tube-dwelling encrusting polychaetes from the early cretaceous Agrio formation (Neuquén Basin, Argentina). Geobios 46:213–224CrossRefGoogle Scholar
  43. Lutze GF, Thiel TH (1989) Epibenthic foraminifera from elevated microhabitats: Cibicidoides wuellerstorfi and Planulina ariminensis. J Foraminifer Res 19:153–158CrossRefGoogle Scholar
  44. Martin D, Britayev TA (1998) Symbiotic Polychaetes: review of known species. Oceanogr. Mar Biol Annu Rev 36:217–340Google Scholar
  45. Mullineaux LS, DeLaca TE (1984) Distribution of antarctic benthic foraminifers settling on the pecten Adamussium colbecki. Polar Biol 3:185–189CrossRefGoogle Scholar
  46. Nishi E, Nishihira M (1996) Age-estimation of the Christmas tree worm Spirobranchus giganteus (Polychaeta, Serpulidae) living buried in the coral skeleton from the coral-growth band of the host coral. Fish Sci (Tokyo) 62:400–403CrossRefGoogle Scholar
  47. Pernet B (2001) Escape hatches for the clonal offsprings of serpulid polichaetes. Biol Bull 200:107–117CrossRefPubMedGoogle Scholar
  48. Qian P-Y (1999) Larval settlement of polychaetes. Hydrobiologia 402:239–253CrossRefGoogle Scholar
  49. Rasser M (1994) Facies and palaeoecology of rhodoliths and acervulinid macroids in the Eocene of the Krappfeld (Austria). Beitr Paläontol 19:191–217Google Scholar
  50. Read G, ten Hove H, Fiege D, Bellan G (2016) Pomatoceros Philippi, 1844. In: Read G, Fauchald K (ed) (2017) World Polychaeta database. Accessed through: World Register of Marine Species at http://www.marinespecies.org/aphia.php?p=taxdetails&id=129572 on 2018–01-08
  51. Reguant S (1967) El Eoceno marino de Vic (Barcelona). Mem Inst Geol y Min Esp 68:1–330Google Scholar
  52. Riedi MA (2012) Carbonate production by two New Zealand serpulids. Skeletal allometry, mineralogy, growth and calcification of Galeolaria hystrix and Spirobranchus cariniferus (Polychaeta: Serpulidae), southern New Zealand. Dissertation, University of Otago. http://hdl.handle.net/10523/2270
  53. Riedi MA, Smith AM (2015) Tube growth and calcification of two reef-building ecosystem engineers in southern New Zealand: Galeolaria hystrix and Spirobranchus cariniferus (Polychaeta: Serpulidae). Mar Geol 367:212–219CrossRefGoogle Scholar
  54. Röttger R (1972) Die Kultur von Heterostegina depressa (Foraminifera: Nummulitidae). Mar Biol 15:150–159CrossRefGoogle Scholar
  55. Santisteban C, Taberner C (1979a) Facies y control tectonico de la cuenca Eocena Subpirenaica Catalana. Acta Geol Hisp 14:237–241Google Scholar
  56. Santisteban C, Taberner C (1979b) Relación entre sedimentos terrígenos costeros, facies arrecifales y evaporitas. El modelo de Centellas y su aplicación regional. Acta Geol Hisp 14:229–236Google Scholar
  57. Seilacher A (1982) Ammonite shells as habitats in the Posidonia shales of Holzmaden – floats or benthic islands? Neues Jahrb Geol P M 1982:98–114Google Scholar
  58. Serra-Kiel J, Martín-Closas C (1989) Relaciones entre los cambios secuenciales y la evolución biológica en los Nummulites del Eoceno y las carófitas del Cretácico. Rev Geol España 2:251–267Google Scholar
  59. Serra-Kiel J, Reguant S (1986) Acerca del valor cronostratigráfico y paleogeográfico de los Nummulites del grupo N. pernotus-perforatus. Aplicación al Eoceno circumpirenaico. Memorias I Jornadas de Paleontología, Zaragoza: 221–231Google Scholar
  60. Serra-Kiel J, Hottinger L, Caus E, Drobne K, Ferràndez C, Jahuri A, Less G, Pavlovec R, Pignatti J, Samsó JM, Schaub H, Sirel E, Strougo A, Tambareau Y, Tosquella J, Zakrevskaya E (1998) Larger foraminiferal biostratigraphy of the Tethyan Paleocene and Eocene. Bull Soc Geol Fr 169:281–299Google Scholar
  61. Serra-Kiel J, Travé A, Mató E, Saula E, Ferràndez-Cañadell C, Busquets P, Tosquella JI, Vergés J (2003) Marine and transitional middle/upper Eocene units of the southeastern Pyrenean Foreland Basin. Geol Acta 1:177–200Google Scholar
  62. Smith SV, Haderlie EC (1969) Growth and longevity of some calcareous fouling organisms, Monterey Bay, California. Pac Sci 23:447–451Google Scholar
  63. Taylor PD (2002) A new terminology for marine organisms inhabiting hard substrates. PALAIOS 17:522–525CrossRefGoogle Scholar
  64. Taylor PD, Wilson MA (2003) Palaeoecology and evolution of marine hard substrate communities. Earth-Sci Rev 62:1–103CrossRefGoogle Scholar
  65. ten Hove HA, van den Hurk P (1993) A review of recent and fossil serpulid ‘reefs’; actuopalaeontology and the ‘upper Malm’ serpulid limestones in NW Germany. Geol Mijnb 72:23–67Google Scholar
  66. ten Hove HA, Kupriyanova EK (2009) Taxonomy of Serpulidae (Annelida, Polychaeta): the state of affairs. Magnolia Press, AucklandGoogle Scholar
  67. Triantaphyllou MV, Dimiza MD, Koukousioura O, Hallock P (2012) Observations on the life cycle of the symbiont-bearing foraminifer Amphistegina lobifera Larsen, an invasive species in coastal ecosystems of the Aegean Sea (Greece, E. Mediterranean). J Foraminifer Res 42:143–150CrossRefGoogle Scholar
  68. Vergés J, Marzo M, Santaeulàlia T, Serra-Kiel J, Burbank DW, Muñoz JA, Gimenez-Montsant J (1998) Quantified vertical motions and tectonic evolution of the SE Pyrenean foreland basin. In: Mascle A, Puigdefàbregas C, Luterbacher HP, Fernández M (eds) Cenozoic foreland basins of Western Europe. Geol Soc London Spec Pub 134: 107–134Google Scholar
  69. Via L (1959) El Eoceno marino surpirenaico. Actes Quatrième Congrès International d'Etudes Pyrénéennes: 121–128Google Scholar
  70. Via L (1969) Crustáceos decápodos del Eoceno español. Pirineos 91–94:1–840Google Scholar
  71. Vinn O, Wilson MA (2010) Sabellid-dominated shallow water calcareous polychaete tubeworm association from the equatorial Tethys Ocean (Matmor formation, middle Jurassic, Israel). N Jb Geol Paläont (Abh) 258:31–38CrossRefGoogle Scholar
  72. Vinn O, Kupriyanova EK, Kiel S (2012) Systematics of serpulid tubeworms (Annelida, Polychaeta) from Cretaceous and Cenozoic hydrocarbon-seep deposits in North America and Europe. N Jb Geol Paläont (Abh) 256:315–325CrossRefGoogle Scholar
  73. Vinn O, Kupriyanova EK, Kiel S (2013) Serpulids (Annelida, Polychaeta) at Cretaceous to modern hydrocarbon seeps: Ecological and evolutionary patterns. Palaeogeogr Palaeoclimatol Palaeoecol 390:35–41CrossRefGoogle Scholar
  74. Ware S (1975) British lower greensand Serpulidae. Palaeontology 18:93–116Google Scholar
  75. Zampi M, Benocci S, Focardi S (1997) Epibiont foraminifera of Sertella frigida (Waters) (Bryozoa, Cheilostomata) from Terranova bay, Ross Sea, Antarctica. Polar Biol 17:363–370CrossRefGoogle Scholar
  76. Zumwalt GS, DeLaca TE (1980) Utilization of brachiopod feeding currents by epizoic foraminifera. J Paleontol 54:477–484Google Scholar
  77. Zuschin M, Stachowitsch M, Pervesler P, Kollmann H (1999) Structural features and taphonomic pathways of a high-biomass epifauna in the northern gulf of Trieste, Adriatic Sea. Lethaia 32:299–317CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department Dinàmica de la Terra i de l’Oceà, Facultat de Ciències de la TerraUniversitat de BarcelonaBarcelonaSpain

Personalised recommendations