Skip to main content
Log in

Isolation of endophytic fungi from tropical forest in Indonesia

  • Published:
Symbiosis Aims and scope Submit manuscript

Abstract

Endophytic fungi (EPF) are an important contributor to fungal diversity. It is surmised that EPF colonizing plant roots have high diversity. This study aimed to alleviate the scarcity of information regarding EPF in tropical forests, by isolationg and identifying EPF from a tropical forests in Indonesia. Soils were collected from five forests: (1) Tectona grandis monoculture; (2) Swietenia macrophylla monoculture; (3) Gmelina sp., Artocarpus champeden, Dipterocarp mixed; (4) Dipterocarp primary; (5) Macaranga sp. secondary. Four trees (Calliandra calothyrsus, Paraserianthes falcataria, Sesbania grandiflora, and Cassia siamea) and three crops (Sorghum bicolor, Allium fistulosum, and Trifolium repens) were grown in the forest soils to trap EPF. EPF were isolated from roots and isolation rates were calculated. Based on the isolation rates, P. falcataria and S. bicolor were chosen and grown again in forest soils. EPF were isolated and identified by their rDNA ITS1 region. Twelve and 21 EPF were isolated from 250 roots of P. falcataria and 300 roots of S. bicolor, respectively. Identified EPF were from genera Acrocalymma, Fusarium, Tolypocladium, Penicillium, Talaromyces, Exophiala, Dictyosporium, Pseudochaetosphaeronema, Mariannaea, Trichoderma, and Mycoleptodiscus. Acrocalymma, Tolypocladium, Penicillium, Exophiala, Pseudochaetosphaeronema, Mariannaea, and Mycoleptodiscus spp. were isolated from only one forest. Fusarium, Talaromyces, and Trichoderma spp. were isolated from more than one forest. The numbers of EPF isolated from Gmelina sp., Artocarpus champeden, Dipterocarp mixed forest, and Macaranga sp. secondary forest were higher than those from other forests, suggesting that different plant species in forests affect the root EPF community.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Ahlich K, Rigling D, Holdenrieder O, Sieber TN (1998) Dark septate hyphomycetes in swiss conifer forest soils surveyed using Norway-spruce seedlings as bait. Soil Biol Biochem 30(8–9):1069–1075

    Article  CAS  Google Scholar 

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  PubMed  CAS  Google Scholar 

  • Amin N (2013) Investigation of culture filtrate of endophytic fungi Nigrospora sp. isolate Rs 10 in different concentrations towards root-knot nematode Meloidogyne spp. Indian J Sci Technol 6(9):5177–5181

    Google Scholar 

  • Amirta R, Yuliansyah AEM, Ananto BR, Setiyono B, Haqiqi MT, Septiana HA, Lodong M, Oktavianto RN (2016) Plant diversity and energy potency of community forest in East Kalimantan, Indonesia: Searching for fast growing wood species for energy production. Nusantara Biosci 8(1):22–31

    Article  Google Scholar 

  • Arnold AE, Lutzoni F (2007) Diversity and host range of foliar fungal endophytes: are tropical leaves biodiversity hotspots? Ecology 88(3):541–549

    Article  PubMed  Google Scholar 

  • Arnold AE, Maynard Z, Gilbert GS, Coley PD, Kursar TA (2000) Are tropical fungal endophytes hyperdiverse? Ecol Lett 3:267–274

    Article  Google Scholar 

  • Arnold AE, Maynard Z, Gilbert GS (2001) Fungal endophytes in dicotyledonous neotropical trees: patterns of abundance and diversity. Mycol Res 105(12):1502–1507

    Article  Google Scholar 

  • Bae H, Sicher RC, Kim MS, Kim SH, Strem MD, Melnick RL, Bailey BA (2009) The beneficial endophyte Trichoderma hamatum isolate DIS 219b promotes growth and delays the onset of the drought response in Theobroma cacao. J Exp Bot 60(11):3279–3295

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Berthelot C, Leyval C, Foulon J, Chalot M, Blaudez D (2016) Plant growth promotion, metabolite production and metal tolerance of dark septate endophytes isolated from metal-polluted poplar phytomanagement sites. FEMS Microbiol Ecol 92(10):1–14. https://doi.org/10.1093/femsec/fiw144

    Article  Google Scholar 

  • Brady NC, Weil RR (2002) The nature and properties of soils, 13th edn. Pearson education Inc., United States of America, pp 39–40 100–109

    Google Scholar 

  • Brock PM, Doring H, Bidartondo MI (2009) How to know unknown fungi: the role of a herbarium. New Phytol 181:719–724

    Article  PubMed  Google Scholar 

  • Brotman Y, Landau U, Cuadros-Inostroza Á, Takayuki T, Fernie AR, Chet I, Viterbo A, Willmitzer L (2013) Trichoderma-plant root colonization: escaping early plant defense responses and activation of the actioxidant machinery for saline stress tolerance. PLoS Pathog 9(3):e1003221. https://doi.org/10.1371/journal.ppat.1003221

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cannon PF, Simmons CM (2002) Diversity and host preference of leaf endophytic fungi in the Iwokrama Forest Reserve, Guyana. Mycologia 94(2):210–220

    Article  PubMed  Google Scholar 

  • Del Val C, Barea JM, Azcón-Aguilar C (1999) Diversity of arbuscular mycorrhizal fungus populations in heavy-metal-contaminated soils. Appl Environ Microbiol 65(2):718–723

    PubMed  PubMed Central  CAS  Google Scholar 

  • Della Monica IF, Saparrat MCN, Godeas AM, Scervino JM (2015) The co-existence between DSE and AMF symbionts affects plant P pools through P mineralization and solubilization processes. Fungal Ecol 17:10–17

    Article  Google Scholar 

  • Fujita K, Furuya S, Kohno M, Suzuki S, Takayanagi T (2010) Analysis of microbial community in Japanese vineyard soils by culture-independent molecular approach. Int J Wine Res 2:75–104

    CAS  Google Scholar 

  • Göransson P, Olsson PA, Postma J, Falkengren-Grerup U (2008) Colonisation by arbuscular mycorrhizal and fine endophytic fungi in four woodland grasses – variation in relation to pH and aluminium. Soil Biol Biochem 40:2260–2265

    Article  Google Scholar 

  • Hakim SS, Budi SW, Turjaman M (2015) Phosphate solubilizing and antifungal activity of root endophyte isolated from Shorea leprosula Miq. and Shorea selanica (DC) Blume. Journal Manajemen Hutan Tropika 21(3):138–146

    Article  Google Scholar 

  • Hawksworth DL (2001) The magnitude of fungal diversity: the 1.5 million species estimate revisited. Mycol Res 105(12):1422–1432

    Article  Google Scholar 

  • Hiruma K, Gerlach N, Sacristan S, Nakano RT, Hacquard S, Kracher B, Neumann U, Ramirez D, Bucher M, O’Connell RJ, Schulze-Lefert P (2016) Root endophyte Colletotrichum tofieldiae confers plant fitness benefits that are phosphate status dependent. Cell 165:464–474

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ikenaga M, Tabuchi M, Kawauchi T, Sakai M (2016) Application of locked nucleic acid (LNA) primer and PCR clamping by LNA oligonucleotide to enhance the amplification of internal transcribed spacer (ITS) regions in investigating the community structures of plant-associated fungi. Microbes Environ 31(3):339–348

    Article  PubMed  PubMed Central  Google Scholar 

  • Jin HQ, Liu HB, Xie YY, Zhang YG, Xu QQ, Mao LJ, Li XJ, Chen J, Lin FC, Zhang CL (2017) Effect of the dark septate endophytic fungus Acrocalymma vagum on heavy metal content in tobacco leaves. Symbiosis 74(2):89–95 https://doi.org/10.1007/s13199-017-0485-4

  • Jumpponen A, Trappe JM (1998) Dark septate endophytes: a review of facultative biotrophic root-colonizing fungi. New Phytol 140:295–310

    Article  Google Scholar 

  • Katoh K, Misawa K, Kuma K, Miyata T (2002) MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res 30(14):3059–3066

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kernaghan G, Patriquin G (2011) Host associations between fungal root endophytes and boreal trees. Microb Ecol 62(2):460–473

    Article  PubMed  Google Scholar 

  • Khalmuratova I, Kim H, Nam YJ, Oh Y, Jeong MJ, Choi HR, You YH, Choo YS, Lee IJ, Shin JH, Yoon H, Kim JG (2015) Diversity and plant growth promoting capacity of endophytic fungi associated with halophytic plants from the west coast of Korea. Mycobiology 43(4):373–383

    Article  PubMed  PubMed Central  Google Scholar 

  • Khan SA, Hamayun M, Yoon H, Kim HY, Suh SJ, Hwang SK, Kim JM, Lee IJ, Choo YS, Yoon UH, Kong WS, Lee BM, Kim JG (2008) Plant growth promotion and Penicillium citrinum. BMC Microbiol 8:231. https://doi.org/10.1186/1471-2180-8-231

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Khan AL, Hamayun M, Waqas M, Kang SM, Kim YH, Kim DH, Lee IJ (2012) Exophiala sp. LHL08 association gives heat stress tolerance by avoiding oxidative damage to cucumber plants. Biol Fertil Soils 48:519–529

    Article  CAS  Google Scholar 

  • Khastini RO, Ohta H, Narisawa K (2012) The role of a dark septate endophytic fungus, Veronaeopsis simplex Y34, in Fusarium disease suppression in Chinese cabbage. J Microbiol 50(4):618–624

    Article  PubMed  Google Scholar 

  • Krisnawati H, Varis E, Kallio M, Kanninen M (2011) (L.) Nielsen: ecology, silviculture and productivity. Center for International Forestry Research, pp 2–4

  • Kwasna H, Szewczyk W, Behnke-Borowczyk J (2016) Fungal root endophytes of Quercus robur subjected to flooding. For Pathol 46:35–46

    Article  Google Scholar 

  • Lin X, Lu C, Huang Y, Zheng Z, Su W, Shen Y (2007) Endophytic fungi from a pharmaceutical plant, Camptotheca acuminata: isolation, identification and bioactivity. World J Microbiol Biotechnol 23:1037–1040

    Article  Google Scholar 

  • Lingfei L, Anna Y, Zhiwei Z (2005) Seasonality of arbuscular mycorrhizal symbiosis and dark septate endophytes in a grassland site in southwest China. FEMS Microbiol Ecol 54:367–373

    Article  PubMed  Google Scholar 

  • Maciá-Vicente JG, Jansson HB, Mendgen K, Lopez-Llorca LV (2008) Colonization of barley roots by endophytic fungi and their reduction of take-all caused by Gaeumannomyces graminis var. tritici. Can J Microbiol 54:600–609

    Article  PubMed  Google Scholar 

  • Mandyam K, Jumpponen A (2005) Seeking the elusive function of the root-colonising dark septate endophytic fungi. Stud Mycol 53:173–189

    Article  Google Scholar 

  • Mandyam KG, Roe J, Jumpponen A (2013) Arabidopsis thaliana model system reveals a continuum of responses to root endophyte colonization. Fungal Biol 117:250–260

    Article  PubMed  Google Scholar 

  • Mayerhofer MS, Kernaghan G, Harper KA (2013) The effects of fungal root endophytes on plant growth: a meta-analysis. Mycorrhiza 23:119–128

    Article  PubMed  Google Scholar 

  • Mugerwa TTM, Saleeba JA, McGee PA (2013) A variety of melanised root-associated fungi from the Sydney basin form endophytic associations with Trifolium subterraneum. Fungal Ecol 6:70–82

    Article  Google Scholar 

  • Mukherjee M, Mukherjee PK, Horwitz BA, Zachow C, Berg G, Zeilinger S (2012) Trichoderma–plant–pathogen interactions: advances in genetics of biological control. Indian J Microbiol 52(4):522–529

    Article  PubMed  PubMed Central  Google Scholar 

  • Murphy BR, Nieto LM, Doohan FM, Hodkinson TR (2015) Profundae diversitas: the uncharted genetic diversity in a newly studied group of fungal root endophytes. Mycology 6(3–4):139–150

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Narisawa K, Kawamata H, Currah RS, Hashiba T (2002) Suppression of Verticillium wilt in eggplant by some fungal root endophytes. Eur J Plant Pathol 108:103–109

    Article  Google Scholar 

  • Narisawa K, Hambleton S, Currah RS (2007) Heteroconium chaetospira, a dark septate root endophyte allied to the Herpotrichiellaceae (Chaetothyriales) obtained from some forest soil samples in Canada using bait plants. Mycoscience 48:274–281

    Article  Google Scholar 

  • Newsham KK (2011) A meta-analysis of plant responses to dark septate root endophytes. New Phytol 190:783–793. https://doi.org/10.1111/j.1469-8137.2010.03611.x

    Article  PubMed  CAS  Google Scholar 

  • O’Brien HE, Parrent JL, Jackson JA, Moncalvo JM, Vilgalys R (2005) Fungal community analysis by large-scale sequencing of environmental samples. Appl Environ Microbiol 71(9):5544–5550

    Article  PubMed  PubMed Central  Google Scholar 

  • Olsen SR, Sommers LE (1982) Phosphorus. In: Page AL (ed) Methods of soil analysis. Part 2. Chemical and microbiological properties. Soil science society of America, Madison, pp 403–430

    Google Scholar 

  • Otsamo A, Adjers G, Hadi TS, Kuusipalo J, Vuokko R (1997) Evaluation of reforestation of 83 tree species planted on Imperata cylindrica dominated grassland. New For 14:127–143

    Article  Google Scholar 

  • Porras-Alfaro A, Herrera J, Sinsabaugh RL, Odenbach KJ, Lowrey T, Natvig DO (2008) Novel root fungal consortium associated with a dominant desert grass. Appl Environ Microbiol 74(9):2805–2813

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rodriguez RJ, White JF Jr, Arnold AE, Redman RS (2009) Fungal endophytes: diversity and functional roles. New Phytol 182(2):134–330

    Article  Google Scholar 

  • Saikkonen K (2007) Forest structure and fungal endophytes. Fungal Biol Rev 21:67–74

    Article  Google Scholar 

  • Sánchez Márquez S, Bills GF, Domínguez Acuña L, Zabalgogeazcoa I (2010) Endophytic mycobiota of leaves and roots of the grass Holcus lanatus. Fungal Divers 41:115–123

    Article  Google Scholar 

  • Schulz B, Boyle C (2005) The endophytic continuum. Mycol Res 109(6):661–686

    Article  PubMed  Google Scholar 

  • Schulz B, Wanke U, Draeger S, Aust HJ (1993) Endophytes from herbaceous plants and shrubs: effectiveness of surface sterilization methods. Mycol Res 97:1447–1450

    Article  Google Scholar 

  • Shearer JF, Durham BD, Harms N (2011) Screening of biological control pathogens isolated from Eurasian watermilfoil. J Aquat Plant Manag 49:118–121

    Google Scholar 

  • Shubin L, Juan H, RenChao Z, ShiRu X, YuanXiao J (2014) Fungal endophytes of Alpinia officinarum rhizomes: Insights on diversity and variation across growth years, growth sites, and the inner active chemical concentration. PLoS One 9(12):e115289. https://doi.org/10.1371/journal.pone.011528

    Article  PubMed  PubMed Central  Google Scholar 

  • Siregar UF, Rachmi A, Massijawa MY, Ishibashi N, Ando K (2007) Economic analysis of sengon (Paraserianthes falcataria) community forest plantation, a fast growing species in East Java, Indonesia. Forest Policy Econ 9:822–829

    Article  Google Scholar 

  • Soil survey staff (1992) Soil survey laboratory methods manual. Version No 2.0. USDA-NRCS. Soil Survey Investigations Report No. 42. U.S. Govt. Print. Office, Washington, DC

  • Sreelalitha SJ, Sridhar KR (2015) Endophytic fungi of wild legume Sesbania bispinosa in coastal sand dunes and mangroves of the Southwest coast of India. J For Res 26(4):1003–1011. https://doi.org/10.1007/s11676-015-0103-3

    Article  Google Scholar 

  • Strobel GA (2003) Endophytes as sources of bioactive products. Microbes Infect 5:535–544

    Article  PubMed  CAS  Google Scholar 

  • Suryanarayanan TS, Murali TS, Thirunavukkarasu N, Govinda Rajulu MB, Venkatesan G, Sukumar R (2011) Endophytic fungal communities in woody perennials of three tropical forest types of the Western Ghats, Southern India. Biodivers Conserv 20:913–928

    Article  Google Scholar 

  • Ting ASY, Mah SW, Tee CS (2012) Evaluating the feasibility of induced host resistance by endophytic isolate Penicillium citrinum BTF08 as a control mechanism for Fusarium wilt in banana plantlets. Biol Control 61:155–159

    Article  Google Scholar 

  • Truog E (1930) The determination of the readily available phosphorus of soils. J Am Soc Agron 2:874–882

    Article  Google Scholar 

  • Usuki F, Narisawa K (2007) A mutualistic symbiosis between dark septate endophytic fungus, Heteroconium chaetospira, and a nonmycorrhizal plant, Chinese cabbage. Mycologia 99(2):175–184

    Article  PubMed  CAS  Google Scholar 

  • Verma VC, Gond SK, Kumar A, Kharwar RN, Boulanger LA, Strobel GA (2012) Endophytic fungal flora from roots and fruits of an Indian Neem plant Azadirachta indica A. Juss. and impact of culture media on their isolation. Indian J Microbiol 51(4):469–476

    Article  Google Scholar 

  • Vinale F, Sivasithamparam K, Ghisalberti EL, Marra R, Woo SL, Lorito M (2008) Trichoderma–plant–pathogen interactions. Soil Biol Biochem 40:1–10

    Article  CAS  Google Scholar 

  • Wagatsuma T, Kawashima T, Tawaraya K (1988) Comparative stainability of plant-root cells with basic dye (methylene blue) in association with aluminum tolerance. Commun Soil Sci Plant Anal 19:1207–1215

    Article  CAS  Google Scholar 

  • Waipara NW, Di Menna ME, Cole ALJ, Skipp RA (1996) Potential pathogenicity of pasture plant root-colonising fungi to seedlings of legumes and grasses. Proc. 49th New Zealand Protection Conference, pp. 212–215

  • Wang JL, Li T, Liu GY, Smith JM, Zhao ZW (2016) Unraveling the role of dark septate endophyte (DSE) colonizing maize (Zea mays) under cadmium stress: physiological, cytological and genic aspects. Sci Rep 6:22028. https://doi.org/10.1038/srep22028

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wulandari D, Saridi, Cheng W, Tawaraya K (2016) Arbuscular mycorrhizal fungal inoculation improves Albizia saman and Paraserianthes falcataria growth in post-opencast coal mine field in East Kalimantan, Indonesia. For Ecol Manag 376:67–73

    Article  Google Scholar 

  • Yao YQ, Lan F, Qiao YM, Wei JG, Huang RS, Li LB (2017) Endophytic fungi harbored in the root of Sophora tonkinensis Gapnep: Diversity and biocontrol potential against phytopathogens. MicrobiologyOpen 6:e437. https://doi.org/10.1002/mbo3.437

    Article  CAS  Google Scholar 

  • Zhang Q, Gong M, Yuan J, Hou Y, Zhang H, Wang Y, Hou X (2017a) Dark septate endophyte improves drought tolerance in sorghum. Int J Agric Biol 19:53–60

    Article  Google Scholar 

  • Zhang Y, Lan TJ, Liao ST, Chen YL, Qin LP, Zhang WL, Nong Q, Xie L (2017b) Diversity of endophytic fungi in mangrove plants of Beibu Gulf, Guangxi. Microbiology China 44(4):783–794 Chinese

    Google Scholar 

  • Zuccaro A, Schoch CL, Spatafora JW, Kohlmeyer J, Draeger S, Mitchell J (2008) Detection and identification of fungi associated with the brown seaweed Fucus serratus. Appl Environ Microbiol 74:931–941

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Dr. Handojo Hadi Nurjanto and Dr. Widiyatno (Universitas Gadjah Mada) for help in gaining access to forest sites in Java Island. We are also grateful to Balai Penelitian Teknologi Konservasi Sumber Daya Alam (BPTKSDA) in Samboja for providing access to forest sites in Kalimantan Island and help in soil collection. This work was supported by JSPS KAKENHI Grant Number No. JP15H05246 from the Japan Society for the Promotion of Science (JSPS), INPEX, and Hashiya Scholarship Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keitaro Tawaraya.

Electronic supplementary material

Table S1

(XLSX 11.6 kb)

Table S2

(XLSX 12 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maulana, A.F., Turjaman, M., Sato, T. et al. Isolation of endophytic fungi from tropical forest in Indonesia. Symbiosis 76, 151–162 (2018). https://doi.org/10.1007/s13199-018-0542-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13199-018-0542-7

Keywords

Navigation