pp 1–9 | Cite as

Effect of Pinus ponderosa afforestation on soilborne Frankia and saprophytic Actinobacteria in Northwest Patagonia, Argentina

  • Natalia B. Arancibia
  • Mariana Solans
  • M. Cecilia Mestre
  • Eugenia E. Chaia


Large areas in the extra-Andean region in the forest - steppe ecotone in “Northwestern Argentinean Patagonia” have been replaced by plantations of the exotic conifer Pinus ponderosa which modify soils physical and chemical factors and alter the biodiversity. Considering that in the region occur saprophytic soilborne actinobacteria that play important role as the fixation of atmospheric nitrogen (N2) in symbiosis with native plant species and the production of bioactive molecules in plants rhizosphere, we aimed to study the effect of the plantation on the abundance of the N2 fixer Frankia and on the genus diversity of cultivable rhizospheric actinobacteria. The study was performed with soils of six paired sites with pine plantations and natural neighbor areas (including steppes or shrublands). Abundance of infective Frankia was estimated by evaluating the nodulation capacity of soils, through a plant bioassay using Ochetophila trinervis as trap plant. Isolation trials for saprophytic actinobacteria were performed by applying chemotactic and successive soils dilutions methods. We concluded that P. ponderosa afforestation affect soil actinobacteria. This was mainly evidenced by a decrease in the Frankia nodulation capacity in O. trinervis, which was related to plantation age, to lower soil carbon and nitrogen content, higher available phosphorus, and to a slight decrease in soils pH. Pine plantation influence on the cultivable saprophytic actinobacteria was less clear. The study highlights the importance of soils as source of Frankia and rhizospheric actinobacteria in relation to disturbance caused by pine plantation in natural environments with native actinorhizal plant species.


Actinoplanes Discaria Frankia population Nodulation capacity Ochetophila trinervis 



We thank two anonymous referees that contributed to improve the quality of the paper. Financial support for this study was provided through grants by Universidad Nacional del Comahue. M. Solans and C. Mestre are members of CONICET.


  1. AIC Autoridad Interjurisdiccional de las Cuencas de los ríos Limay (2017) Neuquén y Negro. Accessed 15 Apr 2017
  2. Araujo PI, Austin AT (2015) A shady business: pine afforestation alters the primary controls on litter decomposition along a precipitation gradient in Patagonia, Argentina. J Ecol 103(6):1408–1420CrossRefGoogle Scholar
  3. Araujo PI, Yahdjian L, Austin AT (2012) Do soil organisms affect aboveground litter decomposition in the semiarid Patagonian steppe, Argentina? Oecologia 168(1):221–230CrossRefPubMedGoogle Scholar
  4. Austin AT, Vivanco L (2006) Plant litter decomposition in a semi-arid ecosystem controlled by photodegradation. Nature 442:555–558CrossRefPubMedGoogle Scholar
  5. Boelcke O, Correa MN, Moore DM, Roig FA (1985) Catálogo de las Plantas Vasculares. Transecta Botánica de la Patagonia Austral. Consejo Nacional de Investigaciones Científicas y Técnicas (Arg), Instituto de la Patagonia (Chile) y Royal Society (Gran Bretaña), Buenos Aires, pp 733 Google Scholar
  6. Caballé G, Fernández ME, Gyenge J, Lantschner V, Rusch V, Letourneau F, Borrelli L (2016) Silvopastoral systems based on natural grassland and ponderosa pine in northwestern Patagonia, Argentina. In: Peri P, Dube F, Varella A (eds) Silvopastoral systems in southern south America. Advances in agroforestry, vol 11. Springer, Cham, pp 89–115CrossRefGoogle Scholar
  7. Cardoso BM, Chaia EE, Raffaele E (2010) Are northwestern Patagonian “mallín” wetland meadows reservoirs of Ochetophila trinervis infective Frankia? Symbiosis 52:11–19CrossRefGoogle Scholar
  8. Chaia EE (1998) Isolation of an effective strain of Frankia from nodules of Discaria trinervis (Rhamnaceae). Plant Soil 205:99–102CrossRefGoogle Scholar
  9. Chaia EE, Ribeiro Guevara S, Rizzo A, Arribére M (2005) Occurrence of Discaria trinervis nodulating Frankia in dated sediments of glacial Andean lakes. Symbiosis 39:67–75Google Scholar
  10. Chaia EE, Fontenla SB, Vobis G, Wall LG (2006) Infectivity of soilborne Frankia and mycorrhizae in Discaria trinervis along a vegetation gradient in Patagonian soil. J Basic Microbiol 46(4):263–274CrossRefPubMedGoogle Scholar
  11. Chaia EE, Solans M, Vobis G, Wall LG (2007) Infectivity variation of Discaria trinervis-nodulating Frankia in Patagonian soil according to season and storage conditions. Physiol Plant 130:357–363CrossRefGoogle Scholar
  12. Chaia EE, Wall LG, Huss-Danell K (2010) Life in soil by the actinorhizal root nodule endophyte Frankia. A review. Symbiosis 51:201–226CrossRefGoogle Scholar
  13. Chaia EE, Sosa MC, Raffaele E (2012) Vertebrate faeces as sources of nodulating Frankia in Patagonia. Symbiosis 56:139–145CrossRefGoogle Scholar
  14. Cho S, Han J, Seong CN, Kim SB (2006) Phylogenetic diversity of acidophilic sporoActinobacteria isolated from various soils. J Microbiol 44(6):600–606PubMedGoogle Scholar
  15. Cusato MS, Tortosa RD (1998) Host specificity of Frankia from actinorhizal plant soils of south America. Φyton 62:231–236Google Scholar
  16. Davies FL, Williams ST (1970) Studies on the ecology of actinomycetes in soil: I. The occurrence and distribution of actinomycetes in a pine forest soil. Soil Biol Biochem 2(4):227–238CrossRefGoogle Scholar
  17. Dawson JO (2008) Ecology of actinorhizal plants. In: Pawloski K, Newton WE (eds) Nitrogen fixation: origins, applications, and research progress, vol. 6. Nitrogen-fixing actinorhizal symbioses. Springer, Dordrecht, pp 199–234CrossRefGoogle Scholar
  18. Defrieri RL, Sarti G, Tortarolo MF, Escobar-Ortega J, García de Salamone I, D’Auria F, Effron D (2011) Biochemical and microbiological properties of Argentinean Patagonia soil with implanted forest species. J Soil Sci Plant Nutr 11(3):111–124Google Scholar
  19. Gauthier D, Jaffré T, Prin Y (2000) Abundance of Frankia from Gymnostoma spp. in the rhizosphere of Alphitonia neocaledonica, a non-nodulated Rhamnaceae endemic to New Caledonia. Eur J Soil Biol 36(3):169–175CrossRefGoogle Scholar
  20. Gee GW, Or D (2002) Particle-size analysis. In: Dane JH, Topp CG (eds) Methods of soil analysis: part 4 physical methods. SSSA Book Ser. 5.4. SSSA, Madison, pp 255–293Google Scholar
  21. Ghermandi L, Franzese J, Gonzalez SL, de Torres Curth MI, Ruete A (2013) Disentangling Fabiana imbricata (Solanaceae) regeneration: the importance of disturbance and rainfall. J Arid Environ 97:9–13CrossRefGoogle Scholar
  22. Goodfellow M, Williams ST (1983) Ecology of actinomycetes. Annu Rev Microbiol 37:189–216CrossRefPubMedGoogle Scholar
  23. Gyenge J, Fernández ME (2014) Patterns of resource use efficiency in relation to intra-specific competition, size of the trees and resource availability in ponderosa pine. For Ecol Manag 312:231–238CrossRefGoogle Scholar
  24. Gyenge JE, Fernández ME, Rusch V, Sarasola M, Schlichter TM (2010) Towards a sustainable forestry development in Patagonia: truths and myths of environmental impacts of plantations with fast growing conifers. Am J Plant Sci Biotechnol 3:9–22Google Scholar
  25. Hackl E, Zechmeister-Boltenstern S, Bodrossy L, Sessitsch A (2004) Comparison of diversities and compositions of bacterial populations inhabiting natural forest soils. Appl Environ Microbiol 70(9):5057–5065CrossRefPubMedPubMedCentralGoogle Scholar
  26. Hahn D, Nickel A, Dawson J (1999) Assessing Frankia populations in plants and soil using molecular methods FEMS Microbiol Ecol 29:215–227Google Scholar
  27. Hess LJ, Austin AT (2017) Pine afforestation alters rhizosphere effects and soil nutrient turnover across a precipitation gradient in Patagonia, Argentina. Plant Soil 415(1–2):449–464CrossRefGoogle Scholar
  28. Huss-Danell K (1978) Nitrogenase activity measurements in intact plants of Alnus incana. Physiol Plant 43:372–376CrossRefGoogle Scholar
  29. Huss-Danell K (1997) Tansley review no 93. Actinorhizal symbioses and their N2 fixation. New Phytol 136:375–405CrossRefGoogle Scholar
  30. Jeong S-C, Myrold DD (2001) Population size and diversity of Frankia in soils of Ceanothus velutinus and Douglas-fir stands. Soil Biol Biochem 33:931–941CrossRefGoogle Scholar
  31. Martin KJ, Posavatz NJ, Myrold DD (2003) Nodulation potential of soils from red alder stands covering a wide age range. Plant Soil 254(1):187–192CrossRefGoogle Scholar
  32. Maunuksela L, Zepp K, Koivula T, Zeyer J, Haahtela K, Hahn D (1999) Analysis of Frankia populations in three soils devoid of actinorhizal plants. FEMS Microbiol Ecol 28(1):11–21CrossRefGoogle Scholar
  33. Mazzarino MJ, Bertiller M, Schlichter T, Gobbi M (1998) Nutrient cycling in Patagonia ecosystems. Ecol Austral 8:167–181Google Scholar
  34. McCarthy AJ, Williams ST (1992) Actinomycetes as agents of biodegradation in the environment-a review. Gene 115:189–192CrossRefPubMedGoogle Scholar
  35. Myrold DD, Huss-Danell K (1994) Population dynamics of Alnus-infective Frankia in a forest soil with and without host trees. Soil Biol Biochem 26:533–540CrossRefGoogle Scholar
  36. Myrold DD, Hilger AB, Huss-Danell K, Martin KJ (1994) Use of molecular methods to enumerate Frankia in soil. In: Ritz K, Dighton J, Giller KE (eds) Beyond the biomass. John Wiley & Sons, Chichester, pp 127–136Google Scholar
  37. Nuñez MA, Dickie IA (2014) Invasive belowground mutualists of woody plants. Biol Invasions 16(3):645–661CrossRefGoogle Scholar
  38. Nuñez MA, Raffaele E (2007) Afforestation causes changes in post-fire regeneration in native shrubland communities of northwestern Patagonia, Argentina. J Veg Sci 18(6):827–834CrossRefGoogle Scholar
  39. Nuñez MA, Relva MA, Simberloff D (2008) Enemy release or invasional meltdown? Deer preference for exotic and native trees on Isla Victoria, Argentina. Austral Ecol 33(3):317–323CrossRefGoogle Scholar
  40. Nuñez M, Horton TR, Simberloff D (2009) Lack of belowground mutualisms hinders Pinaceae invasions. Ecology 90(9):2352–2359CrossRefPubMedGoogle Scholar
  41. Paruelo JM, Beltran A, Jobbagy E, Sala OE, Golluscio RA (1998) The climate of Patagonia: general patterns and controls on biotic processes. Ecol Austral 8(2):85–101Google Scholar
  42. Raffaele E, Schlichter TM (2000) Efectos de las plantaciones de pino ponderosa sobre la heterogeneidad de micrositios en estepas del Noroeste patagónico. Ecol Austral 10:151–158Google Scholar
  43. Raffaele E, Núñez M, Relva M (2015) Plantaciones de coníferas exóticas en Patagonia: los riesgos de plantar sin un manejo adecuado. Ecol Austral 25(2):89–92Google Scholar
  44. Richardson DM, Hui C, Nuñez MA, Pauchard A (2014) Tree invasions: patterns, processes, challenges and opportunities. Biol Invasions 16(3):473–481CrossRefGoogle Scholar
  45. Salgado Salomón MES, Barroetaveña C, Rajchenberg M (2011) Do pine plantations provide mycorrhizal inocula for seedlings establishment in grasslands from Patagonia, Argentina? New For 41(2):191–205CrossRefGoogle Scholar
  46. Samant SS, Dawson JO, Hahn D (2015) Growth responses of indigenous Frankia populations to edaphic factors in actinorhizal rhizospheres. Syst Appl Microbiol 38(7):501–505CrossRefPubMedGoogle Scholar
  47. Simberloff D, Nuñez MA, Ledgard NJ, Pauchard A, Richardson DM, Sarasola M, Peña E (2010) Spread and impact of introduced conifers in south America: lessons from other southern hemisphere regions. Austral Ecol 35(5):489–504CrossRefGoogle Scholar
  48. Smolander A, Sundman V (1987) Frankia in acid soils of forests devoid of actinorhizal plants. Physiol Plant 70:297–303CrossRefGoogle Scholar
  49. Smolander A, Van Dijk C, Sundman V (1988) Survival of Frankia introduced into soil. Plant Soil 106:65–72CrossRefGoogle Scholar
  50. Solans M (2007) Discaria trinervis-Frankia symbiosis promotion by saprophytic actinomycetes. J Basic Microbiol 47:243–250CrossRefPubMedGoogle Scholar
  51. Solans M, Vobis G (2003) Actinomycetes saprofíticos asociados a la rizósfera y rizoplano de Discaria trinervis. Ecol Austral 13:97–107Google Scholar
  52. Solans M, Vobis G, Cassán F, Luna V, Wall LG (2011) Production of phytohormones by root-associated actinomycetes isolated from the actinorhizal plant Ochetophila trinervis. World J Microbiol Biotechnol 27:2195–2202CrossRefGoogle Scholar
  53. Sparks DL, Page AL, Helmke PA, Loeppert RH, Soltanpour PN, Tabatabai MA, Johnston CT, Sumner ME (eds) (1996) Methods of soil analysis. Part 3. Chemical methods. Book series 5. SSSA, ASA, Madison, WisconsinGoogle Scholar
  54. Valverde C, Ferrari A, Wall LG (2002) Phosphorus and the regulation of nodulation in the actinorhizal symbiosis between Discaria trinervis (Rhamnaceae) and Frankia BCU110501. New Phytol 153(1):43–51CrossRefGoogle Scholar
  55. Van der Meij A, Worsley SF, Hutchings MI, van Wezel GP (2017) Chemical ecology of antibiotic production by actinomycetes. FEMS Microbiol Rev 41(3):392–416CrossRefPubMedGoogle Scholar
  56. Van Dijk C (1984) Ecological aspects of spore formation in the Frankia-Alnus symbiosis. Dissertation Leiden State UniversityGoogle Scholar
  57. Wilke BM (2005) Determination of chemical and physical soil properties. In: Margesin R, Schinner F (eds) Soil biology, vol. 5 Manual for soil analysis. Springer-Verlag, Berlin, pp 47–95Google Scholar
  58. Wollum AG, Youngberg CT, Chichester FW (1968) Relation of previous timber stand age to nodulation of Ceanothus velutinus. For Sci 14:114–118Google Scholar
  59. Woomer PL (1994) Most probable number counts. In: Weaver RW, Angle JS, Bottomley PS (eds) Methods of soil analysis, part 2. Microbiological and biochemical properties. Book series 5. ASA, SSSA, Wisconsin, pp 59–79Google Scholar
  60. Youngberg CT, Wollum AG (1976) Nitrogen accretion in developing Ceanothus velutinus stands. Soil Sci Soc Am J 40(1):109–112CrossRefGoogle Scholar
  61. Zar JH (1999) Biostatistical analysis, 4th edition. Prentice Hall Inc, New JerseyGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Natalia B. Arancibia
    • 1
  • Mariana Solans
    • 1
    • 2
  • M. Cecilia Mestre
    • 1
    • 3
  • Eugenia E. Chaia
    • 1
    • 4
  1. 1.Centro Regional Universitario BarilocheUniversidad Nacional del ComahueS.C. BarilocheArgentina
  2. 2.INIBIOMA / CONICETSan Carlos de BarilocheArgentina
  3. 3.IPATEC / CONICETSan Carlos de BarilocheArgentina
  4. 4.INIBIOMASan Carlos de BarilocheArgentina

Personalised recommendations