Advertisement

Symbiosis

, Volume 75, Issue 1, pp 69–79 | Cite as

Observations on the specific associations found between scyphomedusae and commensal fish and invertebrates in the Philippines

  • Sheldon Rey Boco
  • Ephrime B. Metillo
Short communication
  • 115 Downloads

Abstract

Our observations on scyphomedusae from selected Philippine embayments identified specific animals commensal with five species of rhizostome scyphomedusae, Acromitoides purpurus, Mastigias sp., Phyllorhiza punctata, Rhopilema hispidum and Versuriga anadyomene. Acromitoides purpurus medusae harbor the crab Charybdis feriata, the carangid fish Alepes djedaba and the poecilostomatoid copepod Paramacrochiron sp. The carangid A. djedaba was an associate of the blue morph of A. purpurus and Rhopilema hispidum in Panguil Bay. A black-pigmented Alepes sp. was found associated with burgundy A. purpurus medusae in Carigara Bay. Charybdis feriata juveniles are common commensals of all morphs of A. purpurus, R. hispidum and P. punctata medusae. Only the zooxanthelate Mastigias sp. lacked animal symbionts. We invoke the “meeting-point hypothesis” and the general theory of fish aggregation to floating structures to explain fish symbiosis with their medusan hosts. The invertebrate-medusa associations are attributed to feeding behaviors and predator avoidance by resident commensals. This study provides record of the poorly studied scyphozoan species and their association with animals in Philippine waters. Finally, we discuss the potential reasons why the golden spotted jellyfish, Mastigias sp., appears to lack animal commensals.

Keywords

Color morph Gelatinous zooplankton Jellyfish Scyphozoa Symbiosis 

Notes

Acknowledgements

This work is supported by a MSc. Scholarship grant (NSC-ASTHRDP) of SRB provided by the Philippine Department of Science and Technology. We thank M.E. Malugao, S.A.U. Balt, J.B. Villaroya, B. Sebial, and Z.M. Agir for assistance in the field. We are very grateful for the help of the residents of Kolambugan, Lanao del Norte with Mayor Eyoy Maniegos during our Panguil Bay surveys. Agir Family is greatly acknowledged for logistical support during Zamboanga del Sur surveys. We thank Prof. F.R.M. Ladiao of Leyte Normal University, Tacloban City, P.J. Mayo of Visayas State University, Baybay City and K. Salamida with the Salamida family of Guiuan, Eastern Samar for logistical support during Eastern Visayas surveys. Dr. T. Heeger is acknowledged for relevant discussions about Philippine jellyfishes.

References

  1. Abelló P, Hispano C (2006) The capture of the indo-Pacific crab Charybdis feriata (Linnaeus, 1758) (Brachyura: Portunidae) in the Mediterranean Sea. Aquat Invasions 1:13–16CrossRefGoogle Scholar
  2. Allen GR (2009) Field guide to marine fishes of tropical Australia (4th ed). Western Australian Museum. WelshpoolGoogle Scholar
  3. Bayha KM, Graham WM (2011) First confirmed reports of the rhizostome jellyfish Mastigias (Cnidaria: Rhizostomeae) in the Atlantic basin. Aquat Invasions 6(3):361–366CrossRefGoogle Scholar
  4. Boco SR, Metillo EB, Papa RD (2014) Abundance, size and symbionts of Catostylus sp. medusae (Scyphozoa, Rhizostomeae) in Panguil Bay, Northern Mindanao, Philippines. Philippine Journal of Systematic Biology 8:63–81Google Scholar
  5. Brandon M, Cutress CE (1985) A new Dondice (opisthobranchia: Favorinidae), predator of Cassiopea in southwest Puerto Rico. Bull Mar Sci 36(1):139–144Google Scholar
  6. Brotz L, Schiariti A, López-Martínez J et al (2016) Jellyfish fisheries in the Americas: origin, state of the art, and perspectives on new fishing grounds. Rev Fish Biol Fish 27(1):1–29CrossRefGoogle Scholar
  7. Browne JG, Kingsford MJ (2005) A commensal relationship between the scyphozoan medusae Catostylus mosaicus and the copepod Paramacrochiron maximum. Mar Biol 146:1157–1168CrossRefGoogle Scholar
  8. Browne JG, Pitt KA, Norman MD (2017) Temporal patterns of association between the jellyfish Catostylus mosaicus and a sphaeromatid isopod and parasitic anemone. Mar Freshwater Res 68(9):1771Google Scholar
  9. Bruce AJ (1988) Periclimenes tonga sp. nov., a commensal shrimp associated with a scyphozoan host from Tonga (Crustacea: Decapoda: Palaemonidae). Micronesica 21:23–32Google Scholar
  10. Carpenter KE, Springer VG (2005) The center of the center of marine shore fish biodiversity: the Philippine Islands. Environ Biol Fish 72:467–480CrossRefGoogle Scholar
  11. Castro J, Santiago J, Santana-Ortega A (2002) A general theory on fish aggregation to floating objects: an alternative to the meeting point hypothesis. Rev Fish Biol Fish 11(3):255–277CrossRefGoogle Scholar
  12. Cevik C, Derici OB, Cevik F (2011) First record of Phyllorhiza punctata von Lendenfeld, 1884 (Scyphozoa: Rhizostomeae: Mastigiidae) from Turkey. Aquat Invasions 5(Supplement 1):S79–S84Google Scholar
  13. Colin SP, Costello JH, Klos E (2003) In situ swimming and feeding behavior of eight co-occurring hydromedusae. Mar Ecol Prog Ser 253:305–309CrossRefGoogle Scholar
  14. D’Ambra I, Graham WM, Carmichael RH, Hernandez FJ Jr (2015) Fish rely on scyphozoan hosts as a primary food source: evidence from stable isotope analysis. Mar Biol 162:247–252CrossRefGoogle Scholar
  15. Dawson MN (2005a) Morphologic and molecular redescription of Catostylus mosaicus conservativus (Scyphozoa: Rhizostomeae: Catostylidae) from south-east Australia. J Mar Biol Assoc UK 85:723–731CrossRefGoogle Scholar
  16. Dawson MN (2005b) Morphological variation and systematics in the Scyphozoa: Mastigias (Rhizostomeae, Mastigiidae) – a golden unstandard? Hydrobiologia 537:185–206CrossRefGoogle Scholar
  17. Dawson MN (2005c) Five new subspecies of Mastigias (Scyphozoa: Rhizostomeae: Mastigiidae) from marine lakes, Palau, Micronesia. J Mar Biol Assoc UK 85:679–694CrossRefGoogle Scholar
  18. Doyle TK, Hays GC, Harrod C et al (2014) Ecological and societal benefits of jellyfish. In jellyfish blooms (pp. 105-127). Springer NetherlandsGoogle Scholar
  19. Fielder DR, Greenwood JG, Campbell G (1984) The megalopa of Charybdis feriata (Linnaeus) with additions to the zoeal larvae descriptions (Decapoda, Portunidae). Crustaceana 46(2):160–165CrossRefGoogle Scholar
  20. Fréon P, Dagorn L (2000) Review of fish associative behaviour: toward a generalization of the meeting point hypothesis. Rev Fish Biol Fish 10:183–207CrossRefGoogle Scholar
  21. Fujita T, Namikawa H (2006) New observations of Ophiocnemis marmorata (Echinodermata: Ophiuroidea) associated with Rhopilema esculentum (Cnidaria: Scyphozoa: Rhizostomeae) in the Philippines and Japan. Memoirs of the National Science Museum of Tokyo 44:31–37Google Scholar
  22. Galil BS, Spanier E, Ferguson WW (1990) The scyphomedusae of the Mediterranean coast of Israel, including two Lessepsian migrants new to the Mediterranean. Zoologische Mededelingen 64(7):95–105Google Scholar
  23. Gemmell BJ, Costello JH, Colin SP, Stewart CJ, Dabiri JO, Tafti D, Priya S (2013) Passive energy recapture in jellyfish contributes to propulsive advantage over other metazoans. Proc Natl Acad Sci U S A 110(44):17904–17909CrossRefPubMedPubMedCentralGoogle Scholar
  24. Gershwin L (2003) Scyphozoa and Cubozoa of Guam. Micronesica 35-36:156–158Google Scholar
  25. Golani D, Fricke R, Appelbaum-Golani B (2011) First record of the indo-Pacific slender ponyfish Equulites elongatus (Günther, 1874) (Perciformes: Leiognathidae) in the Mediterranean. Aquat Invasions 6(Suppl. 1):S75–S77CrossRefGoogle Scholar
  26. Gordon AL, Sprintall J, Ffield A (2011) Regional oceanography of the Philippine archipelago. Oceanography 24(1):14–27CrossRefGoogle Scholar
  27. Gul S, Morandini AC (2013) New records of scyphomedusae from Pakistan coast: Catostylus perezi and Pelagia cf. noctiluca (Cnidaria: Scyphozoa). Marine Biodiversity Records 6:e86CrossRefGoogle Scholar
  28. Heeger T (1998) Quallen. Gefährliche Schönheiten. Stuttgart, Wissenschaftliche Verlagsgesellschaft mbH, Stuttgart, GermanyGoogle Scholar
  29. Heeger T, Piatkowski U, Möller H (1992) Predation of jellyfish by the cephalopod Argonauta argo. Mar Ecol Prog Ser Series 88:293–296CrossRefGoogle Scholar
  30. Iwatsuki Y, Kimura S (1996) First record of the carangid fish, Alepes djedaba (Forsskål) from Japanese waters. Ichthyological Res 43(2):182–185CrossRefGoogle Scholar
  31. Iyengar EV (2008) Kleptoparasitic interactions throughout the animal kingdom and a re-evaluation, based on participant mobility, of the conditions promoting the evolution of kleptoparasitism. Biol J Linn Soc 93:745–762CrossRefGoogle Scholar
  32. Kaburaki T (1923) The polyclad turbellarians from the Philippine Islands. US Natl Mus 100(1):635-649Google Scholar
  33. Karplus I (2014) Symbiosis in fishes: the biology of interspecific partnerships. John Wiley and Sons, United KingdomCrossRefGoogle Scholar
  34. Kitamura M, Omori M (2010) Synopsis of edible jellyfishes collected from Southeast Asia, with notes on jellyfish fisheries. Plankton Benthos Res 5:106–118CrossRefGoogle Scholar
  35. Kondo Y, Ohtsuka S, Nishikawa J, Metillo E et al (2014) Associations of fish juveniles with rhizostome jellyfishes in the Philippines, with taxonomic remarks on a commercially harvested species in Carigara Bay, Leyte Island. Plankton Benthos Res 9(1):51–56CrossRefGoogle Scholar
  36. Kramp PL (1961) Synopsis of the medusae of the world. J Mar Biol Assoc UK 40:7–382CrossRefGoogle Scholar
  37. Lebrato M, Pitt KA, Sweetman AK et al (2012) Jelly-falls historic and recent observations: a review to drive future research directions. Hydrobiologia 690:227–245CrossRefGoogle Scholar
  38. Light SF (1914) Some Philippine Scyphomedusae, including two new genera, five new species, and one new variety. Philipp J Sci 9D:195–231Google Scholar
  39. Light SF (1921) Further notes on Philippine scyphomedusan jellyfishes. Philipp J Sci 18:25–32Google Scholar
  40. Lo CM, Morand S, Galzin R (1998) Parasite diversity\host age and size relationship in three coral-reef fishes from French Polynesia. Int J Parasitol 28:1695–1708CrossRefPubMedGoogle Scholar
  41. Maas O (1903) Die scyphomedusen der Siboga- Expedition. Siboga-Exped Monogr 11:1–91Google Scholar
  42. Masuda R (2009) Ontogenetic changes in the ecological function of the association behavior between jack mackerel Trachurus japonicus and jellyfish. Hydrobiologia 616:269–277CrossRefGoogle Scholar
  43. Masuda R, Yamashita Y, Matsuyama M (2008) Jack mackerel Trachurus japonicas juveniles use jellyfish for predator avoidance and as a prey collector. Fisheries Sci 74:276–284CrossRefGoogle Scholar
  44. Mayer AG (1910) The medusae of the world. Volume III. The scyphomedusae. Carnegie Institution of Washington publication 109 III: 499–735Google Scholar
  45. Mayer AG (1915) VII. Medusae of the Philippines and of Torres Straits – report upon the Scyphomedusae collected by the United States fisheries bureau steamer “albatross” in the Philippine Islands and Malay archipelago, 1907–1910, and upon medusae collected by the expedition of the Carnegie Institution of Washington to Torres Straits, Australia in 1913. Papers of the Department of Marine Biology. Carnegie Inst Wash 8:157–202Google Scholar
  46. McCloskey L, Muscatine L, Wilkerson F (1994) Daily photosynthesis, respiration, and carbon budgets in a tropical marine jellyfish (Mastigias sp.) Mar Biol 119(1):13–22CrossRefGoogle Scholar
  47. Mebs D (1994) Anemonefish symbiosis: vulnerability and resistance of fish to the toxin of the sea anemone. Toxicon 32(9):1059–1068CrossRefPubMedGoogle Scholar
  48. Mebs D (2009) Chemical biology of the mutualistic relationships of sea anemones with fish and crustaceans. Toxicon 54(8):1071–1074CrossRefPubMedGoogle Scholar
  49. Miller MJ (2009) Ecology of anguilliform leptocephali: remarkable transparent fish larvae of the ocean surface layer. Aqua-BioSciences Monographs 2(4):1–94Google Scholar
  50. Miller MJ, Tsukamoto K (2004) An introduction to leptocephali: biology and identification. Ocean Research Institute, University of Tokyo, TokyoGoogle Scholar
  51. Mortensen T (1917) Observations on protective adaptation and habits, mainly in marine animals. In papers from Dr. T. Mortensen's Pacific expedition, 1914-16. Videnskabelige meddelelser fra Dansk Naturhistorisk Forening i København 69:57–96Google Scholar
  52. Nagelkerken I, Pitt KA, Rutte MD et al (2016) Ocean acidification alters fish – jellyfish symbiosis. Proc R Soc Lond [Biol] 283:20161146CrossRefGoogle Scholar
  53. Nañola CL Jr, Aliño PM, Carpenter KE (2011) Exploitation-related reef fish species richness depletion in the epicenter of marine biodiversity. Environ Biol Fish 90:405–420CrossRefGoogle Scholar
  54. Nedosyko AM, Young JE, Edwards JW et al (2014) Searching for a toxic key to unlock the mystery of anemonefish and anemone symbiosis. PLoS One 9(5):e98449CrossRefPubMedPubMedCentralGoogle Scholar
  55. Nishikawa J, Thu NT, Ha TM (2008) Jellyfish fisheries in northern Vietnam. Plankton Benthos Res 3(4):227–234CrossRefGoogle Scholar
  56. Nogueira M, Haddad MA (2005) Lychnorhiza lucerna Haeckel (Scyphozoa, Rhizostomeae) and Libinia ferreirae Brito Capello (Decapoda, Majidae) association in southern Brazil. Rev Bras Zool 22(4):908–912CrossRefGoogle Scholar
  57. Ohtsuka S, Koike K, Lindsay D et al (2009) Symbionts of marine medusae and ctenophores. Plankton Benthos Res 4:1–13CrossRefGoogle Scholar
  58. Ohtsuka S, Kondo Y, Sakai Y et al (2010) In-situ observations of symbionts on medusae occurring in Japan, Thailand, Indonesia and Malaysia. Bulletin of the Hiroshima University Museum 2:9–18Google Scholar
  59. Ohtsuka S, Boxshall GA, Srinui K (2012) A new species of Paramacrochiron (Copepoda: Cyclopoida: Macrochironidae) associated with the rhizostome medusa Rhopilema hispidum collected from the Gulf of Thailand, with a phylogenetic analysis of the family Macrochironidae. Zool Sci 29(2):127–133CrossRefPubMedGoogle Scholar
  60. Ohtsuka S, Kondo Y, Nishikawa J et al (2013) Symbiotic relationships among jellyfish, fish and invertebrates in Asian waters. Fourth international jellyfish bloom symposium. Hiroshima, JapanGoogle Scholar
  61. Ohtsuka S, Metillo EB, Boxshall GA (2015) First record of association of copepods with highly venomous box jellyfish Chironex, with description of new species of Paramacrochiron (Cyclopoida: Macrochironidae). Zool Sci 32(2):195–203CrossRefPubMedGoogle Scholar
  62. Omori M, Kitamura M (2004) Taxonomic review of three Japanese species of edible jellyfish (Scyphozoa: Rhizostomeae). Plankton Biology and Ecology 51:36–51Google Scholar
  63. Omori M, Nakano E (2001) Jellyfish fisheries in southeast Asia. Hydrobiologia 451:19–26CrossRefGoogle Scholar
  64. Pagliawan HB, Metillo EB, Ohtsuka S (2015) Post-harvest and trading practices of giant jellyfish (Lobonemoides robustus) in Palawan, Philippines. 13th National Symposium on Marine Science, General Santos City, PhilippinesGoogle Scholar
  65. Panikkar NK, Prasad RR (1952) Interesting association of ophiuroids, fish and crab with the jellyfish Rhopilema hispidum. J Bombay Nat Hist Soc 51:295–296Google Scholar
  66. Peach CW (1855) Notes on the habits of medusae and small fishes. Proc Linn Soc 2:280–281Google Scholar
  67. Pohnert G (2004) Chemical defense strategies of marine organisms. The Chemistry of Pheromones and Other Semiochemicals I 179–219Google Scholar
  68. Poore G (2004) Marine decapod crustaceans of southern Australia: a guide to identification. CSIRO Publishing, VictoriaGoogle Scholar
  69. Purcell JE, Arai MN (2001) Interactions of pelagic cnidarians and ctenophores with fish: a review. Hydrobiologia 451:27–44CrossRefGoogle Scholar
  70. Reitzel AM, Sullivan JC, Brown BK et al (2007) Ecological and developmental dynamics of a host-parasite system involving a sea anemone and two ctenophores. J Parasitol 93:1392–1402CrossRefPubMedGoogle Scholar
  71. Rountree RA (1983) The ecology of Stomolophus meleagris, the cannon ball jellyfish, and its symbionts, with special emphasis on behavior. Honours Thesis, University of North CarolinaGoogle Scholar
  72. Rózsa L, Reiczigel J, Majoros G (2000) Quantifying parasites in samples of hosts. J Parasitol 86:228–232CrossRefPubMedGoogle Scholar
  73. Sal Moyano MP, Schiariti A, Giberto DA et al (2012) The symbiotic relationship between Lychnorhiza Lucerna (Scyphozoa, Rhizostomeae) and Libinia spinosa (Decapoda, Epialtidae) in the Río de la Plata (Argentina–Uruguay). Mar Biol 159:1933–1941CrossRefGoogle Scholar
  74. Sanciangco JC, Carpenter KE, Etnoyer PJ, Moretzsohn F (2013) Habitat availability and heterogeneity and the Indo-Pacific warm pool as predictors of marine species richness in the tropical Indo-Pacific. PLoS One 8(2):e56245CrossRefPubMedPubMedCentralGoogle Scholar
  75. Shanks AL, Graham WM (1988) Chemical defense in a scyphomedusa. Mar Ecol Prog Ser 45:81–86CrossRefGoogle Scholar
  76. Soria M, Dagorn L, Potin G et al (2009) First field-based experiment supporting the meeting point hypothesis for schooling in pelagic fish. Anim Behav 78(6):1441–1446CrossRefGoogle Scholar
  77. Spotte S, Heard RW, Bubucis P et al (1991) Pattern and coloration of Periclimenes rathbunae from the Turks and Caicos Islands, with comments on host associations in other anemone shrimps of the West Indies and Bermuda. Gulf Res Rep 8(3):301–311Google Scholar
  78. Stiasny G (1924) Rhizostomeen von Manila. Zoologische Mededelingen 8:39–53Google Scholar
  79. Stiasny G (1926) Über einige Scyphomedusen von Puerto Galera, Mindoro (Philippinen). Zoologische Mededelingen 9(12):239–248Google Scholar
  80. Strickland JD, Parsons TR (1972) A practical handbook of seawater analysis. Bulletin of the Fisheries Research Board of Canada 167:1–293Google Scholar
  81. Swift HF, Gomez Daglio L, Dawson MN (2016) Three routes to crypsis: stasis, convergence, and parallelism in the Mastigias species complex (Scyphozoa, Rhizostomeae). Mol Phylogenet Evol 99:103–115CrossRefPubMedGoogle Scholar
  82. Thiel ME (1976) Wirbellose Meerestiere als Parasiten, Kommensalen oder Symbionten in oder an Scyphomedusen. Helgoländer Meeresun 28:417–446CrossRefGoogle Scholar
  83. Towanda T, Thuesen EV (2006) Ectosymbiotic behavior of Cancer gracilis and its trophic relationships with its host Phacellophora camtschatica and the parasitoid Hyperia medusarum. Mar Ecol Prog Ser 315:221–236CrossRefGoogle Scholar
  84. Tunberg B, Reed SA (2004) Mass occurrence of the jellyfish Stomolophus meleagris and an associated spider crab Libinia dubia, eastern Florida. Florida Scientist 67(2):93–105Google Scholar
  85. Vanhöffen E (1888) Untersuchungen über semästome und rhizostome Medusen. Bibl Zool, Stuttgart 1(3):1-52Google Scholar
  86. Vollrath F (1984) Kleptobiotic interactions in invertebrates. In: Barnard CJ (ed) Producers and scroungers; strategies of exploitation and parasitism. Chapman and Hall, New York, pp 61–94CrossRefGoogle Scholar
  87. von Lendenfeld R (1884) Über eine Übergangsform zwischen Semostomen und Rhizostomen. Zool Anz 5:380–383Google Scholar
  88. Williams GC, Van Syoc RJ (2007) Methods of preservation and anesthetization of marine invertebrates. In: Carleton JT. (Ed.) The Light and Smith Manual: intertidal invertebrates from central California to Oregon. University of California Press, Berkeley, pp 33–41Google Scholar
  89. Wirtz P (1997) Crustacean symbionts of the sea anemone Telmactis cricoides at Madeira and the Canary Islands. J Zool 242:799–811CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  1. 1.Department of Biological SciencesMindanao State University-Iligan Institute of TechnologyIligan CityPhilippines
  2. 2.Australian Rivers Institute – Coasts and Estuaries, Griffith School of Environment, Gold Cost CampusGriffith UniversityGold CoastAustralia

Personalised recommendations