Skip to main content

Advertisement

Log in

In hospite Symbiodinium photophysiology and antioxidant responses in Acropora muricata on a coast-reef scale: implications for variable bleaching patterns

  • Published:
Symbiosis Aims and scope Submit manuscript

Abstract

Understanding susceptibility to bleaching may indicate how corals cope with increasing seawater temperatures resulting from climate change. In Belle Mare lagoon, Mauritius, Acropora muricata colonies at reef sites but not near the coast exhibited bleaching. We compared seawater temperatures and light intensity both on a summer day and a winter day at a reef station and a near-coast station. The total phenolic contents, non-enzymatic antioxidant activities of the coral holobiont, in situ photophysiological parameters of in hospite Symbiodinium as well as their cladal diversity were assessed. Both sites had comparable maximum temperatures but fluctuations were higher in the near-coast station (2–3 °C) compared to the reef station (1–1.5 °C) on both days. Light intensity was higher on the summer day than the winter day at both stations. Higher total phenolic contents and ferrous reducing antioxidant potential were observed in near-coast colonies than in reef colonies on the summer day. Only Clade A-like Symbiodinium sp. variants were detected at both locations, but higher maximum relative electron transport rates and maximum non-photochemical quenching were measured in near-coast colonies. Our data show that the near-coast colonies exhibited enhanced photophysiological responses, antioxidant activities and increased total phenolic contents in response to higher thermal and light fluctuations. This acclimatization may explain the variability in bleaching along a coast-reef scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ainsworth TD, Thurber RV, Gates RD (2010) The future of coral reefs: a microbial perspective. Trends Ecol Evol 25:233–240. doi:10.1016/j.tree.2009.11.001

    Article  PubMed  Google Scholar 

  • Altschul SF, Gish W, Miller W, Myers EW, Lipma DJ (1990) Basic local alignment search tool. J Mol Biol 215(3):403–10

    Article  CAS  PubMed  Google Scholar 

  • Berkelmans R, van Oppen MJH (2006) The role of zooxanthellae in the thermal tolerance of corals: a ‘nugget of hope’ for coral reefs in an era of climate change. Proc R Soc B 273:2305–2312

    Article  PubMed  PubMed Central  Google Scholar 

  • Bhagooli R, Yakovleva I (2004) Differential bleaching susceptibility and mortality patterns among four corals in response to thermal stress. Symbiosis 37(1–3):121–136

    Google Scholar 

  • Bhagooli R, Hidaka M (2006) Thermal inhibition and recovery of the maximum quantum yield of photosystem II and the maximum electron transport rate in zooxanthellae of a reef-building coral. Galaxea, J Jpn Coral Reef Soc 8:1–11. doi:10.3755/jcrs.8.1

  • Bhagooli R, Taleb-Hossenkhan N (2012) Thermal spatial heterogeneity and coral bleaching : implications for habitat refuges. Proc. 12th Intl. Coral Reef Symp. Cairns, Australia, 9–13 July 2012

  • Campos AM, Lissi EA (1996) Total antioxidant potential of Chilean wines. Nutr Res 16:385–389

    Article  CAS  Google Scholar 

  • Chen CA, Yang Y-W, Wei NV, Tsai W-S, Fang L-S (2005) Symbiont diversity in scleractinian corals from tropical reefs and subtropical non-reef communities in Taiwan. Coral Reefs 24:11–22. doi:10.1007/s00338-004-0389-7

    Article  CAS  Google Scholar 

  • Coles SL, Brown BE (2003) Coral bleaching-capacity for acclimatization and adaptation. Adv Mar Biol 46:183–223

    Article  CAS  PubMed  Google Scholar 

  • Dove SG, Hoegh-Guldberg O, Ranganathan S (2001) Major colour patterns of reef-building corals are due to a family of GFP-like proteins. Coral Reefs 19:197–204. doi:10.1007/PL00006956

    Article  Google Scholar 

  • Duan X, Wu G, Jiang Y (2007) Evaluation of the antioxidant properties of litchi fruit phenolics in relation to pericarp browning prevention. Mol Basel Switz 12:759–771

    CAS  Google Scholar 

  • Edge R, McGarvey DJ, Truscott TG (1997) The carotenoids as anti-oxidants--a review. J Photochem Photobiol B 41:189–200

    Article  CAS  PubMed  Google Scholar 

  • Genty B, Harbinson J, Briantais J-M, Baker NR (1990) The relationship between non-photochemical quenching of chlorophyll fluorescence and the rate of photosystem 2 photochemistry in leaves. Photosynth Res 25:249–257. doi:10.1007/BF00033166

    Article  CAS  PubMed  Google Scholar 

  • Griffin SP, Bhagooli R (2004) Measuring antioxidant potential in corals using the FRAP assay. J Exp Mar Biol Ecol 302:201–211. doi:10.1016/j.jembe.2003.10.008

    Article  CAS  Google Scholar 

  • Griffin SP, Bhagooli R, Weil E (2006) Evaluation of thermal acclimation capacity in corals with different thermal histories based on catalase concentrations and antioxidant potentials. Comp Biochem Physiol A Mol Integr Physiol 144:155–162. doi:10.1016/j.cbpa.2006.02.017

    Article  PubMed  Google Scholar 

  • Higuchi T, Fujimura H, Arakaki T, Oomori T (2008) Activities of antioxidant enzymes (SOD and CAT) in the coral Galaxea fascicularis against increased hydrogen peroxide concentrations in seawater. Proc 11th Intl Coral Reef Symp 926–930

  • Hill R, Frankart C, Ralph PJ (2005) Impact of bleaching conditions on the components of non-photochemical quenching in the zooxanthellae of a coral. J Exp Mar Biol Ecol 322:83–92. doi:10.1016/j.jembe.2005.02.011

    Article  CAS  Google Scholar 

  • Hoegh-Guldberg O, Mumby PJ, Hooten AJ, Steneck RS, Greenfield P, Gomez E, Harvell CD, Sale PF, Edwards AJ, Caldeira K, Knowlton N, Eakin CM, Iglesias-Prieto R, Muthiga N, Bradbury RH, Dubi A, Hatziolos ME (2007) Coral reefs under rapid climate change and ocean acidification. Science 318:1737–1742. doi:10.1126/science.1152509

    Article  CAS  PubMed  Google Scholar 

  • Howells EJ, Beltran VH, Larsen NW, Bay LK, Willis BL, van Oppen MJH (2011) Coral thermal tolerance shaped by local adaptation of photosymbionts. Nat Clim Chang 2:116–120. doi:10.1038/nclimate1330

    Article  Google Scholar 

  • Jones RJ, Hoegh-Guldberg O, Larkum AWD, Schreiber U (1998) Temperature-induced bleaching of corals begins with impairment of the CO2 fixation mechanism in zooxanthellae. Plant Cell Environ 21:1219–1230

    Article  CAS  Google Scholar 

  • Krämer WE, Caamaño-Ricken I, Richter C, Bischof K (2012) Dynamic regulation of photoprotection determines thermal tolerance of two phylotypes of Symbiodinium clade A at two photon fluence rates. Photochem Photobiol 88:398–413. doi:10.1111/j.1751-1097.2011.01048.x

    Article  PubMed  Google Scholar 

  • Krueger T, Becker S, Pontasch S, Dove S, Hoegh-Guldberg O, Leggat W, Fisher PL, Davy SK (2014) Antioxidant plasticity and thermal sensitivity in four types of Symbiodinium sp. J Phycol 50:1035–1047. doi:10.1111/jpy.12232

    Article  CAS  PubMed  Google Scholar 

  • Krueger T, Fisher PL, Becker S, Pontasch S, Dove S, Hoegh-Guldberg O, Leggat W, Davy SK (2015) Transcriptomic characterization of the enzymatic antioxidants FeSOD, MnSOD, APX and KatG in the dinoflagellate genus Symbiodinium. BMC Evol Biol 15. doi:10.1186/s12862-015-0326-0

  • Lesser MP (1997) Oxidative stress causes coral bleaching during exposure to elevated temperatures. Coral Reefs 16:187–192. doi:10.1007/s003380050073

    Article  Google Scholar 

  • Lesser MP (2006) Oxidative stress in marine environments: biochemistry and physiological ecology. Annu Rev Physiol 68:253–278. doi:10.1146/annurev.physiol.68.040104.110001

    Article  CAS  PubMed  Google Scholar 

  • Linan-Cabello MA, Flores-Ramirez LA, Zenteno-Savin T, Olguin-Monroy NO, Sosa-Avalos R, Patiao-Barragan M, Olivos-Ortiz A (2010) Seasonal changes of antioxidant and oxidative parameters in the coral Pocillopora capitata on the Pacific coast of Mexico: seasonal and oxidative stress changes in Pocillopora. Mar Ecol 407–414. doi:10.1111/j.1439-0485.2009.00349.x

  • Loh WKW, Carter D, Hoegh-Guldberg O (1998) Diversity of zooxanthellae from scleractinian corals of One Tree Island (The Great Barrier Reef). In: Greenwood JG, Hall NJ (eds) Proc. ACRS, 75th Annual Conference, University of Queensland, Brisbane, p 141–150

  • Lutz A, Motti CA, Freckelton ML, van Oppen MJH, Miller DJ, Dunlap WC (2014) Simultaneous determination of coenzyme Q and plastoquinone redox states in the coral-Symbiodinium symbiosis during thermally induced bleaching. J Exp Mar Biol Ecol 455:1–6

    Article  CAS  Google Scholar 

  • Middlebrook R, Hoegh-Guldberg O, Leggat W (2008) The effect of thermal history on the susceptibility of reef-building corals to thermal stress. J Exp Biol 211:1050–6. doi:10.1242/jeb.013284

    Article  PubMed  Google Scholar 

  • Platt T, Gallegos CL, Harrison WG (1980) Photoinhibition of photosynthesis in natural assemblages of marine phytoplankton. J Mar Res 38(4):687–701

    Google Scholar 

  • Pochon X, Gates RD (2010) A new Symbiodinium clade (Dinophyceae) from soritid foraminifera in Hawai’i. Mol Phylogenet Evol 56:492–7. doi:10.1016/j.ympev.2010.03.040

    Article  CAS  PubMed  Google Scholar 

  • Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glöckner FO (2013) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 41(D1):D590–D596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ralph P, Gademann R, Larkum A, Kühl M (2002) Spatial heterogeneity in active chlorophyll fluorescence and PSII activity of coral tissues. Mar Biol 141:639–646. doi:10.1007/s00227-002-0866-x

    Article  CAS  Google Scholar 

  • Rowan R, Powers D (1991) Molecular genetic identification of symbiotic dinoflagellates (zooxanthellae). Mar Ecol Prog Ser 71:65–73. doi:10.3354/meps071065

    Article  CAS  Google Scholar 

  • Silverstein RN, Cunning R, Baker AC (2015) Change in algal symbiont communities after bleaching, not prior heat exposure, increases heat tolerance of reef corals. Glob Chang Biol 21:236–249. doi:10.1111/gcb.12706

    Article  PubMed  Google Scholar 

  • Singleton VL, Orthofer R, Lamuela-Raventós RM (1999) Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods Enzymol 299:152–178

    Article  CAS  Google Scholar 

  • Somanah J, Aruoma OI, Gunness TK, Kowelssur S, Dambala V, Murad F, Googoolye K, Daus D, Indelicato J, Bourdon E, Bahorun T (2012) Effects of a short term supplementation of a fermented papaya preparation on biomarkers of diabetes mellitus in a randomized Mauritian population. Prev Med 54(Suppl):S90–97. doi:10.1016/j.ypmed.2012.01.014

    Article  CAS  PubMed  Google Scholar 

  • Spalding MD, Brown BE (2015) Warm-water coral reefs and climate change. Science 350:769

    Article  CAS  PubMed  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2725–2729

  • Thompson DM, van Woesik R (2009) Corals escape bleaching in regions that recently and historically experienced frequent thermal stress. Proc Biol Sci 276:2893–2901. doi:10.1098/rspb.2009.0591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Toller WW, Rowan R, Knowlton N (2001) Zooxanthellae of the Montastraea annularis species complex: patterns of distribution of four taxa of Symbiodinium on different reefs and across depths. Biol Bull 201:348–359

    Article  CAS  PubMed  Google Scholar 

  • Trench RK (1979) The cell biology of plant-animal symbiosis. Ann Rev Plant Physiol 30:485–531

    Article  CAS  Google Scholar 

  • Ulstrup K, Hill R, van Oppen M, Larkum A, Ralph P (2008) Seasonal variation in the photophysiology of homogeneous and heterogeneous Symbiodinium consortia in two scleractinian corals. Mar Ecol Prog Ser 361:139–150. doi:10.3354/meps07360

    Article  Google Scholar 

  • Warner ME, Fitt WK, Schmidt GW (1996) The effects of elevated temperature on the photosynthetic efficiency of zooxanthellae in hospite from four different species of reef coral: a novel approach. Plant Cell Environ 19:291–299

    Article  Google Scholar 

  • Wright JS, Johnson ER, DiLabio GA (2001) Predicting the activity of phenolic antioxidants: theoretical method, analysis of substituent effects, and application to major families of antioxidants. J Am Chem Soc 123:1173–1183

    Article  CAS  PubMed  Google Scholar 

  • Yakovleva I, Bhagooli R, Takemura A, Hidaka M (2004) Differential susceptibility to oxidative stress of two scleractinian corals: antioxidant functioning of mycosporine-glycine. Comp Biochem Physiol B Biochem Mol Biol 139:721–730. doi:10.1016/j.cbpc.2004.08.016

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Y. D. L acknowledges the University of Mauritius for MPhil/PhD research funding and logistics, and the technical staff of Department of Biosciences for assistance. We thank Drs T. Higuchi, C. Kenkel, T. Nakamura, P. Todd, D. Vianney and I. Yakovleva for insightful and critical comments on the manuscript. Y.D.L is thankful to the Tertiary Education Commission (TEC) of Mauritius for an MPhil/PhD scholarship. Corals were collected under a permit granted by the Ministry of Fisheries, Republic of Mauritius. The authors are thankful to anonymous reviewers and the editors for comments that have significantly improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ranjeet Bhagooli.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

(DOCX 77 kb)

Fig. S2

(DOCX 563 kb)

Fig. S3

(DOCX 1306 kb)

Table S1

(DOCX 15 kb)

Table S2

(DOCX 16 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Louis, Y.D., Kaullysing, D., Gopeechund, A. et al. In hospite Symbiodinium photophysiology and antioxidant responses in Acropora muricata on a coast-reef scale: implications for variable bleaching patterns. Symbiosis 68, 61–72 (2016). https://doi.org/10.1007/s13199-016-0380-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13199-016-0380-4

Keywords

Navigation