Skip to main content
Log in

Evolution of symbiotic bacteria within the extra- and intra-cellular plant compartments: experimental evidence and mathematical simulation (Mini-review)

  • Published:
Symbiosis Aims and scope Submit manuscript

Abstract

Using the example of nodular legume-rhizobia symbiosis (LRS), we discuss the evolution in plant micro-symbionts of mutualistic traits that are apparently host-beneficial and therefore the products of inter-species evolution. These traits include: in planta activation of N2 fixation machinery; exporting the products of nitrogenase reaction into the plant cells/tissues; and the terminal differentiation of bacteria into non-reproductive N2-fixing bacteroids. It seems probable that such adaptive traits evolved by natural selection within the populations of endosymbiotic bacteria that colonize the extra- and intra-cellular compartments provided by the hosts (i.e., infection threads and symbiosomes). This evolution would occur under the impacts of group (inter-deme, kin) selection pressures induced by the partners’ metabolic and regulatory feedbacks that ensure the high activity of symbiotic N2 fixation. These important feedbacks include: progressive allocation of C compounds into N2-fixing nodules; maintenance of micro-aerobic intracellular environments that are indispensable for intensive N2 fixation; and stringent control by the host over bacterial reproduction in planta. A computational simulation of the associated co-evolutionary processes reveals the trade-off between inter-species and individual species components of progressive and adaptive LRS evolution. This is expressed as a correlated increase of ecological efficiency, functional integrity and genotypic specificity of mutualistic symbiosis. Thus, the evolution of rhizobia in symbiosis may be represented by a progressive multi-level scenario based on increasing the dependency of bacteria on the host-provided nutrients accompanied by increasing complexity of the bacterial genomes and of the symbiosis-encoding gene networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Borisov A, Rozov SM, Tsyganov VE, Morzhina EV, Lebsky VK, Tikhonovich IA (1997) Sequential functioning of Sym-13 and Sym-31, two genes affecting symbiosome development in root nodules of pea (Pisum sativum L.). Mol Gen Genet 254:592–598

    Article  PubMed  CAS  Google Scholar 

  • Brewin NJ (1991) Development of the legume root nodule. Ann Rev Cell Biol 7:191–226

    Article  PubMed  CAS  Google Scholar 

  • Brewin NJ (2004) Plant cell wall remodeling in the Rhizobium-legume symbiosis. Crit Rev Plant Sci 23:1–24

    Article  Google Scholar 

  • Bronstein JL (2009) The evolution of facilitation and mutualism. J Ecol 97:1160–1170

    Article  Google Scholar 

  • Brundrett MC (2002) Coevolution of roots and mycorrhizas of land plants. New Phytol 154:275–304

    Article  Google Scholar 

  • Bryan JA, Berlyn GP, Gordon JC (1996) Towards a new concept of the evolution of symbiotic nitrogen fixation in the Leguminosae. Plant Soil 186:151–159

    Article  CAS  Google Scholar 

  • Cheng J, Sibley CD, Zaheer R, Finan TM (2007) A Sinorhizobium minE mutant has an altered morphology and exhibits defects in legume symbiosis. Microbiology 153:375–387

    Article  PubMed  CAS  Google Scholar 

  • Darlington PJ (1978) Altruism: its characteristics and evolution. Proc Natl Acad Sci USA 75:385–389

    Article  PubMed  Google Scholar 

  • de Bary A (1879) Die Erscheinung der Symbiose. Verlag Von Karl J Trübner, Strassburg

    Google Scholar 

  • Denison RF, Kiers ET (2004a) Lifestyle alternatives for rhizobia: mutualism, parasitism and foregoing symbiosis. FEMS Microbiol Lett 237:187–193

    Article  PubMed  CAS  Google Scholar 

  • Denison RF, Kiers ET (2004b) Why are most rhizobia beneficial to their plant hosts, rather than parasitic? Microb Infect 6:1235–1239

    Article  CAS  Google Scholar 

  • Douglas AE (1994) Symbiotic interactions. Oxford Univ Press, Oxford New York Toronto

    Google Scholar 

  • Downie JA, Young JPW (2001) The ABC of symbiosis. Nature 412:597–598

    Article  PubMed  CAS  Google Scholar 

  • Doyle JJ (1998) Phylogenetic perspectives on nodulation: evolving views of plants and symbiotic bacteria. Trends Plant Sci 2:473–478

    Article  Google Scholar 

  • Doyle JJ, Chappill JA, Bailey CD, Kajita T (2000) Towards a comprehensive phylogeny of legumes: evidence from rbcL sequences and non-molecular data. In: Herendeen PS, Bruneau A (eds) Advances in legume systematics. Roy Botan Gardens, Key, pp 1–20

  • Franche C, Lindstrom K, Elmerich C (2009) Nitrogen-fixing bacteria associated with leguminous and non-leguminous plants. Plant Soil 321:35–59

    Article  CAS  Google Scholar 

  • Frank SA (1994) Genetics of mutualism: the evolution of altruism between species. J Theor Biol 170:393–400

    Article  PubMed  CAS  Google Scholar 

  • Friesen ML (2012) Widespread fitness alignment in the legume-rhizobium symbiosis. New Phytol 194:1096–1111

    Article  PubMed  Google Scholar 

  • Giraud E, Moulin L, Vallenet D, Barbe V, Cytryn E, Avarre JC, Jaubert M, Simon D, Cartieaux F, Prin Y, Bena G, Hannibal L, Fardoux J, Kojadinovic M, Vuillet L, Lajus A, Cruveiller S, Rouy Z, Mangenot S, Segurens B, Dossat C, Franck WL, Chang WS, Saunders E, Bruce D, Richardson P, Normand P, Dreyfus B, Pignol D, Stacey G, Emerich D, Verméglio A, Médigue C, Sadowsky M (2007) Legume symbioses: absence of nod genes in photosynthetic bradyrhizobia. Science 316:1307–1312

    Article  PubMed  Google Scholar 

  • Heinrich K, Ryder MH, Murphy PJ (2001) Early production of rhizopine in nodules induced by Sinorhizobium meliloti strain L5-30. Can J Microbiol 47:165–171

    PubMed  CAS  Google Scholar 

  • Hirsch AM, Lum MR, Downie JA (2001) What makes the rhizobia-legume symbiosis so special? Plant Physiol 127:1484–1492

    Article  PubMed  CAS  Google Scholar 

  • Janzen DH (1980) When is it coevolution? Evolution 34:611–612

    Article  Google Scholar 

  • Kaneko T, Minamisawa K, Isawa T, Nakatsukasa H, Mitsui H, Kawaharada Y, Nakamura Y, Watanabe A, Kawashima K, Ono A, Shimizu Y, Takahashi C, Minami C, Fujishiro T, Kohara M, Katoh M, Nakazaki N, Nakayama S, Yamada M, Tabata S, Sato S (2010) Complete genomic structure of the cultivated rice endophyte Azospirillum sp. B510. DNA Res 17:37–50

    Article  PubMed  CAS  Google Scholar 

  • Karunakaran R, Haag AF, East AK, Ramachandran VK, Prell J, James EK, Scocchi M, Ferguson GP, Poole PS (2010) BacA is essential for bacteroid development in nodules of Galegoid, but not Phaseoloid legumes. J Bacteriol 192:2920–2928

    Article  PubMed  CAS  Google Scholar 

  • Krishnan HB, Chronis D (2008) Functional nodFE genes are present in Sinorhizobium sp. strain MUS10, a symbiont of the tropical legume Sesbania rostrata. Appl Environ Microbiol 74:2921–2923

    Article  PubMed  CAS  Google Scholar 

  • MacLean AM, Finan TM, Sadowsky MJ (2007) Genomes of symbiotic nitrogen-fixing bacteria of legumes. Plant Physiol 144:615–622

    Article  PubMed  CAS  Google Scholar 

  • Maillet F, Poinsot V, Andre O, Puech-Pages V, Haouy A, Gueunier M, Cromer L, Giraudet D, Formey D, Niebel A, Martinez EA, Driguez H, Becard G, Denarie J (2011) Fungal lipochitooligosaccharide symbiotic signals in arbuscular mycorrhiza. Nature 469:58–65

    Article  PubMed  CAS  Google Scholar 

  • Margulis L (2010) Symbiogenesis. A new principle of evolution rediscovery of Boris Mikhaylovich Kozo-Polyansky (1890–1957). In: Kolchinsky EI (ed) Charles Darwin and modern biology. Nestor-Historia, St-Petersburg Russia, pp 34–48

    Google Scholar 

  • Margulis L, Sagan D (2002) Acquiring genomes. A theory of the origins of species. Basic Books, New York

    Google Scholar 

  • Markmann K, Parniske M (2008) Evolution of root endosymbiosis with bacteria: how novel are nodules? Trends Plant Sci 14:77–86

    Article  Google Scholar 

  • Martin W (2003) Gene transfer from organelles to the nucleus: frequent and in big chunks. Proc Natl Acad Sci USA 100:8612–8614

    Article  PubMed  CAS  Google Scholar 

  • Mergaert P, Uchiumi T, Alunni B, Evanno G, Cheron A, Catrice O, Mausset AE, Barloy-Hubler F, Galibert F, Kondorosi A, Kondorosi E (2006) Eukaryotic control on bacterial cell cycle and differentiation in the Rhizobium–legume symbiosis. Proc Natl Acad Sci USA 103:5230–5235

    Article  PubMed  CAS  Google Scholar 

  • Nikoh N, Hosokawa T, Oshima K, Hattori M, Fukatsu T (2011) Reductive evolution of bacterial genome in insect gut environment. Genome Biol Evol 3:702–714

    Article  PubMed  CAS  Google Scholar 

  • Oono R, Denison RF, Kiers ET (2009) Controlling the reproductive fate of rhizobia: how universal are legume sanctions? New Phytol 183:967–979

    Article  PubMed  Google Scholar 

  • Parniske M (2008) Arbuscular mycorrhiza: the mother of plant root endosymbioses. Nat Rev Microbiol 6:763–775

    Article  PubMed  CAS  Google Scholar 

  • Parsons R (2002) Nodule function and regulation in Gunnera-Nostoc symbioses. Proc Ir Roy Acad Sci 102:41–43

    Article  Google Scholar 

  • Perret X, Staehelin C, Broughton WJ (2000) Molecular basis for symbiotic promiscuity. Microbiol Molec Biol Rev 64:180–201

    Article  CAS  Google Scholar 

  • Pini F, Galardini M, Bazzicalupo M, Mengoni A (2011) Plant-bacteria association and symbiosis: are there common genomic traits in Alphaproteobacteria? Gene 2:1017–1032

    Article  CAS  Google Scholar 

  • Prell J, White JP, Bourdes A, Bunnewell S, Bongaerts RJ, Poole PS, Long SR (2009) Legumes regulate Rhizobium bacteroid development and persistence by the supply of branched-chain amino acids. Proc Natl Acad Sci USA 106:12477–12482

    Article  PubMed  CAS  Google Scholar 

  • Provorov NA (1994) The interdependence between taxonomy of legumes and specificity of their interaction with rhizobia in relation to evolution of the symbiosis. Symbiosis 17:183–200

    Google Scholar 

  • Provorov NA (1998) Coevolution of rhizobia with legumes: facts and hypotheses. Symbiosis 24:337–367

    Google Scholar 

  • Provorov NA, Tikhonovich IA (2003) Genetic resources for improving nitrogen fixation in legume-rhizobia symbiosis. Genet Res Crop Evol 50:89–99

    Article  CAS  Google Scholar 

  • Provorov NA, Vorobyov NI (2000) Population genetics of rhizobia: construction and analysis of an “infection and release” model. J Theor Biol 205:105–119

    Article  PubMed  CAS  Google Scholar 

  • Provorov NA, Vorobyov NI (2006) Interplay of Darwinian and frequency-dependent selection in the host-associated microbial populations. Theor Popul Biol 70:262–272

    Article  PubMed  Google Scholar 

  • Provorov NA, Vorobyov NI (2008) Equilibrium between the “genuine mutualists” and “symbiotic cheaters” in the bacterial population co-evolving with plants in a facultative symbiosis. Theor Popul Biol 74:345–355

    Article  PubMed  Google Scholar 

  • Provorov NA, Vorobyov NI (2009) Host plant as on organizer of microbial evolution in the beneficial symbioses. Phytochem Rev 8:519–534

    Article  CAS  Google Scholar 

  • Provorov NA, Vorobyov NI (2010a) Evolutionary genetics of plant-microbe symbioses. NOVA Sci Publ, New York

    Google Scholar 

  • Provorov NA, Vorobyov NI (2010b) Simulation of evolution implemented in the mutualistic symbioses towards enhancing their ecological efficiency, functional integrity and genotypic specificity. Theor Popul Biol 78:259–269

    Article  PubMed  Google Scholar 

  • Provorov NA, Vorobyov NI (2012) Reconstruction of the adaptively advantages macro-evolutionary events in the mutualistic symbioses. In: Pontarotti P (ed) Evolutionary biology: mechanisms and trends. Springer, Heidelberg, pp 169–188

    Chapter  Google Scholar 

  • Provorov NA, Borisov AY, Tikhonovich IA (2002) Developmental genetics and evolution of symbiotic structures in nitrogen-fixing nodules and arbuscular mycorrhiza. J Theor Biol 214:215–232

    Article  PubMed  CAS  Google Scholar 

  • Ratcliff WC, Underbakke K, Denison RF (2011) Measuring the fitness of symbiotic rhizobia. Symbiosis 55:85–90

    Article  Google Scholar 

  • Rodriguez RJ, Freeman DC, McArthur ED, Kim YO, Redman RS (2009) Symbiotic regulation of plant growth, development and reproduction. Commun Integr Biol 2:141–143

    PubMed  Google Scholar 

  • Sachs JL, Essenberg CJ, Turcotte MM (2011) New paradigms for the evolution of beneficial infections. Trends Ecol Evol 1346:1–8

    Google Scholar 

  • Saikia SP, Jain V, Khetarpal S, Aravind S (2007) Dinitrogen fixation activity of Azospirillum brasilense in maize (Zea mays). Curr Sci 93:1296–1300

    CAS  Google Scholar 

  • Sanchez L, Weidmann S, Arnould C, Bernard AR, Gianinazzi S, Gianinazzi-Pearson V (2005) Pseudomonas fluorescens and Glomus mosseae trigger DMI3-dependent activation of genes related to a signal transduction pathway in roots of Medicago truncatula. Plant Physiol 139:1065–1077

    Article  PubMed  CAS  Google Scholar 

  • Schmalhausen I (1983) Pathways and regularities of the evolutionary process (in Russian). Nauka, Moscow

    Google Scholar 

  • Seckbach J (2002) Symbiosis: mechanisms and model systems. Kluwer Acad Publ, Dordrecht Boston London

    Google Scholar 

  • Sherrier DJ, Borisov AY, Tikhonovich IA, Brewin NJ (1997) Immunocytological evidence for abnormal symbiosome development in nodules of the pea mutant line Sprint2Fix (sym31). Protoplasma 199:57–68

    Article  Google Scholar 

  • Shtark OY, Borisov AY, Zhukov VA, Provorov NA, Tikhonovich IA (2010) Intimate associations of beneficial soil microbes with host plants. In: Dixon R, Tilston E (eds) Soil microbiology and sustainable crop production. Springer, Berlin Heidelberg, pp 119–196

    Chapter  Google Scholar 

  • Sprent JI (2001) Nodulation in legumes. Cromwell Press Ltd, Kew

    Google Scholar 

  • Sprent JI (2007) Evolving ideas of legume evolution and diversity: a taxonomic perspective on the ocurrence of nodulation. New Phytol 174:11–25

    Article  PubMed  CAS  Google Scholar 

  • Streeter J (1995) Integration of plant and bacterial metabolism in nitrogen fixing systems. In: Tikhonovich IA, Provorov NA, Romanov VI, Newton WE (eds) Nitrogen fixations: fundamentals and applications. Kluwer Acad Publ, Dordrecht Boston London, pp 67–76

    Chapter  Google Scholar 

  • Tikhonovich IA, Provorov NA (2009) From plant-microbe interactions to symbiogenetics: a universal paradigm for the inter-species genetic integration. Ann Appl Biol 154:341–350

    Article  Google Scholar 

  • Tikhonovich IA, Provorov NA (2011) Microbiology is the basis of sustainable agriculture: an opinion. Ann Appl Biol 159:155–168

    Article  CAS  Google Scholar 

  • Timmers ACS, Soupene E, Auriac MC, de Billy F, Vasse J, Boistard P, Truchet G (2000) Saprophytic intracellular rhizobia in alfalfa nodules. Mol Plant Microbe Interact 13:1204–1213

    Article  PubMed  CAS  Google Scholar 

  • Tsyganov VE, Voroshilova VA, Herrera-Cervera JA, Sanjuan-Pinilla JM, Borisov AY, Tikhonovich IA, Priefer UB, Olivares J, Sanjuan J (2003) Developmental down-regulation of rhizobial genes as a function of symbiosome differentiation in symbiotic root nodules of Pisum sativum L. New Phytol 159:521–530

    Article  CAS  Google Scholar 

  • Tsyganova AV, Tsyganov VE, Borisov AY, Tikhonovich IA, Brewin NJ (2009) Comparative cytochemical analysis of hydrogen peroxide distribution in pea ineffective mutant SGEFix-1 (sym40) and initial line SGE. Ecol Genet 7:3–9 (in Russian)

    Google Scholar 

  • Udvardi MK, Kahn ML (1992) Evolution of the (Brady)Rhizobium-legume symbiosis: why do bacteroids fix nitrogen? Symbiosis 14:87–101

    Google Scholar 

  • van de Velde W, Guerra JC, de Keyser A, de Rycke R, Rombauts S, Maunoury N, Mergaert P, Zehirov G, Szatmari A, Debreczeny M, Ishihara H, Kevei Z, Farkas A, Mikulass K, Nagy A, Tiricz H, Kondorosi E, Holsters M, Goormachting S (2006) Aging in legume symbiosis. A molecular view on nodule senescence in Medicago truncatula. Plant Physiol 141:711–720

    Article  PubMed  Google Scholar 

  • van de Velde W, Zehirov G, Szatmari A, Debreczeny M, Ishihara H, Kevei Z, Farkas A, Mikulass K, Nagy A, Tiricz H, Satiat-Jeunemaître B, Alunni B, Bourge M, Kucho K, Abe M, Keresz A, Maroti G, Toshiki T, Kondorosi E, Mergaert P (2010) Plant peptides govern terminal differentiation of bacteria in symbiosis. Science 327:1122–1126

    Article  PubMed  Google Scholar 

  • van Ham RCHJ, Kamerbeek J, Palacios C, Rausell C, Abascal F, Bastolla U, Fernández JM, Jiménez L, Postigo M, Silva FJ, Tamames J, Viguera E, Latorre A, Valencia A, Morán F, Moya A (2003) Reductive genome evolution in Buchnera aphidicola. Proc Natl Acad Sci USA 100:581–586

    Article  PubMed  Google Scholar 

  • Vorobyeva EI (2006) Problem of organism integrity and its perspectives. Biol Bull 33:427–436

    Article  Google Scholar 

  • Wang D, Yang S, Tang F, Zhu H (2012) Symbiosis specificity in the legume—rhizobial mutualism. Cell Microbiol 14:334–342

    Article  PubMed  Google Scholar 

  • Yakovlev GP (1991) Legumes of the globe (in Russian). Nauka, Leningrad

    Google Scholar 

  • Young JPW, Crossman LC, Johnston AWB, Thomson NR, Ghazoui ZF, Hull KH, Wexler M, Curson ARJ, Todd JD, Poole PS, Mauchline TH, East AK, Quail MA, Churcher C, Arrowsmith C, Cherevach I, Chillingworth T, Clarke K, Cronin A, Davis P, Fraser A, Hance Z, Hauser H, Jagels K, Moule S, Mungall K, Noebertczak H, Rabbinowitsch E, Sanders M, Simmonds M, Whitehead S, Parkhill J (2006) The genome of Rhizobium leguminosarum has recognizable core and accessory components. Genome Biol 7:R34

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Our research is supported by RFBR (12-04-00409а), the Ministry of Education and Science of the Russian Federation (16.552.11.7085; 8056); NJB is Emeritus Fellow at the John Innes Centre, Norwich, UK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikolay A. Provorov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Provorov, N.A., Tsyganova, A.V., Brewin, N.J. et al. Evolution of symbiotic bacteria within the extra- and intra-cellular plant compartments: experimental evidence and mathematical simulation (Mini-review). Symbiosis 58, 39–50 (2012). https://doi.org/10.1007/s13199-012-0220-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13199-012-0220-0

Keywords

Navigation