Nutraceutical potential of flours from tomato by-product and tomato field waste


Tomato field wastes and industrial by-products represents a valuable source of compounds with nutraceutical potential, and therefore of raw material to obtain food ingredients and additives. The objective of this study was to obtain a flour from tomato industrial by-product and from tomato field waste, dried by a conventional method, that allows to remain important nutraceutical compounds, which in the future, can be used for biotechnological purposes. We found that the drying procedure that allowed to reach an adequate water activity (0.4–0.6) in a forced convection oven were: 55 °C during 120 min. Both, the by-product and the field waste are potential sources for the extraction of phenolic and carotenoid compounds, getting up 11.26 μg/mg dry extract of lycopene and 162.82 μg/mg dry extract of phenolic compounds, highlighting the flavonoids: naringenin, catechin, and rutin. On the other hand, antioxidant analysis showed that oven dried by-product exhibits an inhibition around 80% against hydroxyl and peroxyl radicals, and a positive correlation of both lycopene and β-carotene with myoglobin protection ratio against these radicals. We concluded that the flour from tomato industrial by-products and field waste have nutraceutical properties attractive to the food industry.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2


  1. AOAC (1990) Official methods of analysis, 15th edn. Association of Official Analytical Chemists, Washington, D.C.

    Google Scholar 

  2. Espinosa-Alonso LG, Lygin A, Widholm JM et al (2006) Polyphenols in wild and weedy Mexican common beans (Phaseolus vulgaris L.). J Agric Food Chem 54:4436–4444.

    CAS  Article  PubMed  Google Scholar 

  3. FAO-STAT (2019) Statistics Division. Food Balance Sheets: Balance as Domestic Supply/Utilization. Food and Agriculture Organization of the United Nations, Rome

  4. Fattore M, Montesano D, Pagano E, Teta R, Borrelli F et al (2016) Carotenoid and flavonoid profile and antioxidant activity in “Pomodorino vesuviano” tomatoes. J Food Compos Anal 53:61–68.

    CAS  Article  Google Scholar 

  5. Ferreres F, Taveira M, Pereira DM et al (2010) Tomato (Lycopersicon esculentum) Seeds: new flavonols and cytotoxic effect. J Agric Food Chem 58:2854–2861.

    CAS  Article  PubMed  Google Scholar 

  6. Fiedor J, Burda K (2014) Potential role of carotenoids as antioxidants in human health and disease. Nutrients 6:466–488.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  7. Fratianni A, Albanese D, Mignogna R et al (2013) Degradation of carotenoids in apricot (Prunus armeniaca L.) during drying process. Plant Foods Hum Nutr 68:241–246.

    CAS  Article  PubMed  Google Scholar 

  8. Ghafoor K, Al Juhaimi F, Özcan MM et al (2020) Total phenolics, total carotenoids, individual phenolics and antioxidant activity of ginger (Zingiber officinale) rhizome as affected by drying methods. Lwt.

    Article  Google Scholar 

  9. Jorge A, Sauer Leal E, Sequinel R et al (2018) Changes in the composition of tomato powder (Lycopersicon esculentum Mill) resulting from different drying methods. J Food Process Preserv 42:e13595.

    CAS  Article  Google Scholar 

  10. Kong KW, Ismail A, Tan CP, Rajab NF (2010) Optimization of oven drying conditions for lycopene content and lipophilic antioxidant capacity in a by-product of the pink guava puree industry using response surface methodology. LWT Food Sci Technol 43:729–735.

    CAS  Article  Google Scholar 

  11. Lavelli V, Torresani MC (2011) Modelling the stability of lycopene-rich by-products of tomato processing. Food Chem 125:529–535.

    CAS  Article  Google Scholar 

  12. Lavelli V, Zanoni B, Zaniboni A (2007) Effect of water activity on carotenoid degradation in dehydrated carrots. Food Chem 104:1705–1711.

    CAS  Article  Google Scholar 

  13. López-Vidal O, Escalona-Buendía H, Pelayo-Zaldívar C et al (2014) Carotenoid content, antioxidant capacity and volatile compounds of the aroma during tomato ripening | Carotenoides, capacidad antioxidante y compuestos volátiles del aroma durante la maduración de jitomate. Phyton (B Aires) 83:185–192

    Google Scholar 

  14. M’hiri N, Ghali R, Ben Nasr I, Boudhrioua N (2018) Effect of different drying processes on functional properties of industrial lemon byproduct. Process Saf Environ Prot 116:450–460.

    CAS  Article  Google Scholar 

  15. Paur I, Lilleby W, Bøhn SK et al (2017) Tomato-based randomized controlled trial in prostate cancer patients: effect on PSA. Clin Nutr 36:672–679.

    CAS  Article  PubMed  Google Scholar 

  16. Perea-Domínguez XP, Hernández-Gastelum LZ, Olivas-Olguin HR et al (2018) Phenolic composition of tomato varieties and an industrial tomato by-product: free, conjugated and bound phenolics and antioxidant activity. J Food Sci Technol.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Poore J, Nemecek T (2018) Reducing food’s environmental impacts through producers and consumers. Science (80- ) 360:987LP–992LP.

    CAS  Article  Google Scholar 

  18. SIAP (2019) Servicio de Información Agroalimentaria y Pesquera. Cierre de la producción agrícola por cultivo. Secretaría de Agricultura y Desarrollo Rural. Accessed 15 May 2020.

  19. Silva YPA, Ferreira TAPC, Celli GB, Brooks MS (2019) Optimization of lycopene extraction from tomato processing waste using an eco-friendly ethyl lactate–ethyl acetate solvent: a green valorization approach. Waste Biomass Valoriz 10:2851–2861.

    CAS  Article  Google Scholar 

  20. Terashima M, Kakuno Y, Kitano N et al (2012) Antioxidant activity of flavonoids evaluated with myoglobin method. Plant Cell Rep 31:291–298.

    CAS  Article  PubMed  Google Scholar 

  21. Valdez-Morales M, Espinosa-Alonso LG, Espinoza-Torres LC et al (2014) Phenolic content and antioxidant and antimutagenic activities in tomato peel, seeds, and byproducts. J Agric Food Chem 62:5281–5289.

    CAS  Article  PubMed  Google Scholar 

  22. Vela-Hinojosa C, Escalona-Buendía HB, Mendoza-Espinoza JA et al (2018) Chemical and sensory analysis of native genotypes and experimental lines of tomato (Solanum lycopersicum L.). Fruits 73:60–71.

  23. Xu J, Li Y, Hu H (2019) Effects of lycopene on ovarian cancer cell line SKOV3 in vitro: Suppressed proliferation and enhanced apoptosis. Mol Cell Probes 46:101419.

    CAS  Article  PubMed  Google Scholar 

  24. Zhao B, Ren B, Guo R et al (2017) Supplementation of lycopene attenuates oxidative stress induced neuroinflammation and cognitive impairment via Nrf2/NF-κB transcriptional pathway. Food Chem Toxicol 109:505–516.

    CAS  Article  PubMed  Google Scholar 

Download references

Author information



Corresponding authors

Correspondence to Valdez-Morales Maribel or Medina-Godoy Sergio.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Paulino, S.J., Adrián, Á.G., Gabriela, E.L. et al. Nutraceutical potential of flours from tomato by-product and tomato field waste. J Food Sci Technol (2020).

Download citation


  • Industrial by-products
  • Field waste
  • Water activity
  • Nutraceutical compounds
  • Antioxidant capacity