Antioxidant properties of peptides obtained from the split gill mushroom (Schizophyllum commune)

Abstract

This study sought to assess the ideal conditions under which hydrolysate can be produced from the split gill mushroom proteins through the microbial protease, Alcalase. The research employed a central composite design and response surface methodology. Three specific parameters were varied for the purposes of the experimental process, while a fixed pH value of 8 was used in all cases. The variables were hydrolysis temperature (set as 45 °C, 50 °C, or 55 °C), hydrolysis time (set as 60 min, 120 min, or 180 min), and the ratio of enzyme to substrate (set as 2%, 4%, or 6% w/v). The variables under investigation exert a significant influence upon degree of hydrolysis (DH) in addition to 2,2′-Azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical-scavenging activity (p < 0.05). Fractionation of the hydrolysate was accomplished using molecular weight (MW) cut-off membranes, while the greatest radical-scavenging capability was observed in the < 0.65 kDa fraction. The MW < 0.65 kDa fraction underwent separation through RP-HPLC in order to create five sub-fractions. Among these, the greatest ABTS radical-scavenging capability was observed in the F5 sub-fraction, which was therefore chosen to undergo additional examination using quadrupole-time-of-flight-electron spin induction-mass spectrometry-based de novo peptide sequencing. Via this process it was possible to determine five antioxidant peptides. Furthermore, the MW < 0.65 kDa fraction was able to demonstrating cellular antioxidant activity in the context of a human intestinal cancer cell line (HT-29). The extent of this activity was shown to depend upon the concentration levels of the peptide.

Graphic abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding. Anal Biochem 72:248–254. https://doi.org/10.1016/0003-2697(76)90527-3

    CAS  Article  Google Scholar 

  2. Chakrabarti S, Guha S, Majumder K (2018) Food-derived bioactive peptides in human health: challenges and opportunities. Nutrients 10(11):1738. https://doi.org/10.3390/nu10111738

    CAS  Article  PubMed Central  Google Scholar 

  3. Chanput W, Theerakulkait C, Nakai S (2009) Antioxidative properties of partially purified barley hordein, rice bran protein fractions and their hydrolysates. J Cereal Sci 49:422–428. https://doi.org/10.1016/j.jcs.2009.02.001

    CAS  Article  Google Scholar 

  4. Chaturvedi VK, Agarwal S, Gupta KK, Ramteke PW, Singh MP (2018) Medicinal mushroom: boon for therapeutic applications. 3 Biotech 8(8):334. https://doi.org/10.1007/s13205-018-1358-0

    Article  PubMed  PubMed Central  Google Scholar 

  5. Chen HM, Muramoto K, Yamauchi F, Nokihara K (1996) Antioxidant activity of designed peptides based on the antioxidant peptide isolated from digests of a soybean protein. J Agric Food Chem 144(9):2619–2623. https://doi.org/10.1021/jf950833m

    Article  Google Scholar 

  6. Cheung IWY, Cheung LKY, Tan NY, Li-Chan ECY (2012) The role of molecular size in antioxidant activity of peptide fractions from Pacific hake (Merluccius productus) hydrolysates. Food Chem 134(3):1297–1306. https://doi.org/10.1016/j.foodchem.2012.02.215

    CAS  Article  PubMed  Google Scholar 

  7. Church FC, Swaisgood HE, Porter DH, Catignani GL (1983) Spectrophotometric assay using o-Phthaldialdehyde for determination of proteosis in milk and isolated milk proteins. J Dairy Sci 66(6):1219–1227. https://doi.org/10.3168/jds.S0022-0302(83)81926-2

    CAS  Article  Google Scholar 

  8. Daliri EBM, Oh DH, Lee BH (2017) Bioactive peptides. Foods 6(5):32. https://doi.org/10.3390/foods6050032

    CAS  Article  PubMed Central  Google Scholar 

  9. Jeampakdee P, Puthong S, Srimongkol P, Sangtanoo P, Saisavoey T, Karnchanatat A (2020) The apoptotic and free radical-scavenging abilities of the protein hydrolysate obtained from chicken feather meal. Poult Sci 99(3):1693–1704. https://doi.org/10.1016/j.psj.2019.10.050

    Article  PubMed  PubMed Central  Google Scholar 

  10. Jiang B, Zhang X, Yuan Y, Qu Y, Feng Z (2017) Separation of antioxidant peptides from pepsin hydrolysate of whey protein isolate by ATPS of EOPO co-polymer (UCON)/phosphate. Sci Rep 7(1):13320. https://doi.org/10.1038/s41598-017-13507-9

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  11. Kim SY, Je JY, Kim SK (2007) Purification and characterization of antioxidant peptide from hoki (Johnius belengerii) frame protein by gastrointestinal digestion. J Nutr Biochem 18:31–38. https://doi.org/10.1016/j.jnutbio.2006.02.006

    CAS  Article  PubMed  Google Scholar 

  12. Kumari S, Badana AK, Malla R (2018) Reactive oxygen species: a key constituent in cancer survival. Biomark Insights 13:1177271918755391. https://doi.org/10.1177/1177271918755391

    Article  PubMed  PubMed Central  Google Scholar 

  13. Lee J, Koo N, Min DB (2004) Reactive oxygen species, aging, and antioxidative nutraceuticals. Compr Rev Food Sci Food Saf 3(1):21–33. https://doi.org/10.1111/j.1541-4337.2004.tb00058.x

    CAS  Article  PubMed  Google Scholar 

  14. Liu R, Wang M, Duan JA, Guo JM, Tang YP (2010) Purification and identification of three novel antioxidant peptides from Cornu bubali (water buffalo horn). Peptides 31(5):786–793. https://doi.org/10.1016/j.peptides.2010.02.016

    CAS  Article  PubMed  Google Scholar 

  15. Lobo V, Patil A, Phatak A, Chandra N (2010) Free radicals, antioxidants and functional foods: impact on human health. Pharmacogn Rev 4(8):118–126. https://doi.org/10.4103/0973-7847.70902

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  16. Meng X, Liang H, Luo L (2016) Antitumor polysaccharides from mushrooms: a review on the structural characteristics, antitumor mechanisms and immunomodulating activities. Carbohydr Res 424:30–41. https://doi.org/10.1016/j.carres.2016.02.008

    CAS  Article  PubMed  Google Scholar 

  17. Patel S, Goyal A (2012) Recent developments in mushrooms as anti-cancer therapeutics: a review. 3 Biotech 2(1):1–15. https://doi.org/10.1007/s13205-011-0036-2

    Article  PubMed  Google Scholar 

  18. Qian ZJ, Jung WK, Byun HG, Kim SK (2008) Protective effect of an antioxidativepeptide purified from gastrointestinal digests of oyster, Crassostrea gigas against free radical induced DNA damage. Bioresour Technol 99(9):3365–3371. https://doi.org/10.1016/j.biortech.2007.08.018

    CAS  Article  PubMed  Google Scholar 

  19. Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C (1999) Antioxidat activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med 26(9–10):1231–1237. https://doi.org/10.1016/S0891-5849(98)00315-3

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  20. Ren JY, Zhao MM, Shi J, Wang JS, Jiang YM, Cui C, Kakuda Y, Xue SJ (2008) Optimization of antioxidant peptide production from grass carp sarcoplasmic protein using response surface methodology. Food Sci Technol 41(9):1624–1632. https://doi.org/10.1016/j.lwt.2007.11.005

    CAS  Article  Google Scholar 

  21. Rutherfurd-Markwick KJ (2012) Food proteins as a source of bioactive peptides with diverse functions. Br J Nutr 108(Suppl 2):S149–S157. https://doi.org/10.1017/S000711451200253X

    CAS  Article  PubMed  Google Scholar 

  22. Samaranayaka AG, Kitts DD, Li-Chan EC (2010) Antioxidative and angiotensin-I-converting enzyme inhibitory potential of a Pacific Hake (Merluccius productus) fish protein hydrolysate subjected to simulated gastrointestinal digestion and Caco-2 cell permeation. J Agric Food Chem 58(3):1535–1542. https://doi.org/10.1021/jf9033199

    CAS  Article  PubMed  Google Scholar 

  23. Sila A, Bougatef A (2016) Antioxidant peptides from marine by-products: isolation, identification and application in food systems. A review. J Funct Foods 21:10–26. https://doi.org/10.1016/j.jff.2015.11.007

    CAS  Article  Google Scholar 

  24. Suttisuwan R, Phunpruch S, Saisavoey T, Sangtanoo P, Thongchul N, Karnchanatat A (2019) Free radical scavenging properties and induction of apoptotic effects of Fa fraction obtained after proteolysis of bioactive peptides from microalgae Synechococcus sp. VDW. Food Technol Biotechnol 57(3):358–368. https://doi.org/10.17113/ftb.57.03.19.6028

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  25. Takemoto S, Nakamura H, Imamura Y, Shimane T (2010) Schizophyllum commune as a ubiquitous plant parasite. Jpn Agric Res Q 44:357–364

    Article  Google Scholar 

  26. Wang JS, Zhao MM, Zhao QZ, Bao Y, Jiang YM (2007) Antioxidant properties of papain hydrolysates of wheat gluten in different oxidation systems. Food Chem 101(4):1658–1663. https://doi.org/10.1016/j.foodchem.2006.04.024

    CAS  Article  Google Scholar 

  27. Wasser SP (2011) Current findings, future trends, and unsolved problems in studies of medicinal mushrooms. Appl Microbiol Biotechnol 89(5):1323–1332. https://doi.org/10.1007/s00253-010-3067-4

    CAS  Article  PubMed  Google Scholar 

  28. Wasser SP (2014) Medicinal mushroom science: current perspectives, advances, evidences, and challenges. Biomed J 37(6):345–356. https://doi.org/10.1007/s00253-010-3067-4

    CAS  Article  PubMed  Google Scholar 

  29. Wasser SP, Weis AL (1999) Therapeutic effects of substances occurring in higher Basidiomycetes mushrooms: a modern perspective. Crit Rev Immunol 19(1):65–96. https://doi.org/10.1615/CritRevImmunol.v19.i1.30

    CAS  Article  PubMed  Google Scholar 

  30. Wolfe KL, Liu RH (2007) Cellular antioxidant activity (CAA) assay for assessing antioxidants, foods, and dietary supplements. J Agric Food Chem 55(22):8896–8907. https://doi.org/10.1021/jf0715166

    CAS  Article  PubMed  Google Scholar 

  31. Xie N, Wang B, Jiang L, Liu CC, Li B (2015) Hydrophobicity exerts different effects on bioavailability and stability of antioxidant peptide fractions from casein during simulated gastrointestinal digestion and Caco-2 cell absorption. Food Res Int 76(Pt 3):518–526. https://doi.org/10.1016/j.foodres.2015.06.025

    CAS  Article  PubMed  Google Scholar 

  32. Zhang JH, Zhang H, Wang L, Guo XN, Wang XG, Yao HY (2010) Isolation and identification of antioxidative peptides from rice endosperm protein enzymatic hydrolysate by consecutive chromatography and MALDI-TOF/TOF MS/MS. Food Chem 119(1):226–234. https://doi.org/10.1016/j.foodchem.2009.06.015

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, for their support and providing access to their facilities. We acknowledge the financial support from the Grant for Research: The Research Assistantship Fund, Faculty of Science, Chulalongkorn University (RAF_2561_010), The Center of Excellence on Medical Biotechnology (CEMB), S&T Postgraduate Education and Research Development Office (PERDO), Office of Higher Education Commission (OHEC), Thailand (SN-60-003-909), and the Ratchadapisek Sompoch Endowment Fund, Chulalongkorn University (R_016_2556), and the Ratchadapisek Sompoch Endowment Fund (2019), Chulalongkorn University (762008) for providing the financial support for this research. The authors were grateful to Dr. Robert Douglas John Butcher for reviewing this manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Aphichart Karnchanatat.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wongaem, A., Reamtong, O., Srimongkol, P. et al. Antioxidant properties of peptides obtained from the split gill mushroom (Schizophyllum commune). J Food Sci Technol 58, 680–691 (2021). https://doi.org/10.1007/s13197-020-04582-4

Download citation

Keywords

  • Free radical scavenging activity
  • HT-29
  • Protein hydrolysate
  • Response surface methodology
  • Schizophyllum commune
  • Split gill mushroom