Supplementation with free methionine or methionine dipeptide improves meat quality in broilers exposed to heat stress

Abstract

This study aimed to evaluate the effect of methionine dipeptide supplementation on the meat quality of broilers subjected to heat stress. A completely randomized 3 × 2 factorial design with four repetitions of each treatment was used. Three diets, unsupplemented (U), supplemented with methionine (M), and supplemented with methionine dipeptide (MM), were fed to 96 broilers subjected to thermal comfort (TC) or heat stress (HS, 32 °C for 24 h) conditions antemortem. Meat quality parameters, total antioxidant capacity (TAC), protein and lipid oxidation, and ryanodine receptor type 3 (RYR3) gene expression in breast muscle of 35-day-old broilers were evaluated. Methionine supplementation (M and MM) enhanced the nutritional quality of breast meat. Diet had a significant effect on breast meat pH, color (a*), and nitrogen and lipid contents. Interaction effects of diet and HS on TAC and protein oxidation were not observed. Diet and HS influenced lipid oxidation of breast meat after 7 days of refrigerated storage. High RYR3 expression was observed in breast meat of broilers subjected to heat stress and fed the U diet. No differences were observed between M and MM diets in any of the parameters evaluated. The results showed that both sources of methionine (M and MM) can be supplemented in broiler diets with beneficial effects on breast yield and meat nutritional quality. In addition, HS has made chickens more susceptible to biomolecule oxidation, and MM can potentiate chicken TAC. Further study is needed to better understand the effects of MM on broilers.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. AOAC Association Official Analytical Chemist (2005) Official Methods of Analysis, 18th edn. AOAC, Gaitherburg

    Google Scholar 

  2. Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37(8):911–917. https://doi.org/10.1139/y59-099

    CAS  Article  PubMed  Google Scholar 

  3. Carvalho GB (2017) Níveis e fontes de metionina na nutrição de frangos de corte. Tese (Doutorado em Zootecnia) - Universidade Federal de Goiás, Goiânia, p 126

    Google Scholar 

  4. Cauwenberghe SV, Burnham D (2001) New developments in amino acid protein nutrition of poultry, as related to optimal performance and reduced nitrogen excretion. In: European symposium of poultry nutrition, Blankenberge. Anais, Blankenberge, p. 234.

  5. Classen HL (2000) Managing metabolic disease in rapidly growing strains of poultry. In: Hill WG, Bishop SC, McGuirk B, McKay JC, Simm G, Webb A (eds) The challenge of genetic change in animal production. Edinburgh: Journal of the British Society of Animal Science, pp 63–64. (Occasional publication, 27).

  6. Costa FGP, Silva JHV, Goulart CC, Nogueira ET, Sá LM (2014) Exigências de aminoácidos para aves. In: Sakomura NK, Silva JHV, Costa FGP, Fernandes JBK, e Hauschild L, (eds) Nutrição de não ruminantes. Funep, Jaboticabal, pp. 241–261

  7. Del Vesco AP, Gasparino E, Grieser DO, Zancanela V, Soares MAM, Oliveira Neto AR (2015) Effects of methionine supplementation on the expression of oxidative stress-related genes in acute heat stress-exposed broilers. Br J Nutr 113(4):549–559. https://doi.org/10.1017/S0007114514003535

    CAS  Article  PubMed  Google Scholar 

  8. Del Vesco AP, Gasparino E (2013) Production of reactive oxygen species, gene expression, and enzymatic activity in quail subjected to acute heat stress. J Anim Sci 91(2):582–587. https://doi.org/10.2527/jas.2012-5498

    Article  PubMed  Google Scholar 

  9. Gasparino E, Del Vesco AP, Khatlab AS, Zancanela V, Grieser DO, Silva SCC (2018) Effects of methionine hydroxy analogue supplementation on the expression of antioxidant-related genes of acute heat stress-exposed broilers. Animal 12(5):931–939. https://doi.org/10.1017/S1751731117002439

    CAS  Article  PubMed  Google Scholar 

  10. Janaszewska A, Bartosz G (2002) Assay of total antioxidant capacity: comparison of four methods as applied to human blood plasma. Scand J Clin Lab Investiga 62(3):231–236. https://doi.org/10.1080/003655102317475498

    CAS  Article  Google Scholar 

  11. Khatlab AS, Del Vesco AP, Oliveira Neto AR, Fernandes RPM, Gasparino E (2019) Dietary supplementation with free methionine or methionine dipeptide mitigates intestinal oxidative stress induced by Eimeria spp. challenge in broiler chickens. J Anim Sci Biotechnol 10(58):1–17. https://doi.org/10.1186/s40104-019-0353-6

    CAS  Article  Google Scholar 

  12. Lara L, Rostagno M (2013) Impact of heat stress on poultry production. Animals 3(2):356–369. https://doi.org/10.3390/ani3020356

    Article  PubMed  Google Scholar 

  13. Leon LR, Helwig BG (2010) Heat stroke: role of the systemic inflammatory response. J Appl Physiol 109(6):1980–1988. https://doi.org/10.1152/japplphysiol.00301.2010

    CAS  Article  PubMed  Google Scholar 

  14. Levine A, Tenhaken R, Dixon R, Lamb C (1994) H2O2 from the oxidative burst orchestrates the plant hypersensitive disease resistance response. Cell 79(4):583–593. https://doi.org/10.1016/0092-8674(94)90544-4

    CAS  Article  PubMed  Google Scholar 

  15. Levine RL, Mosoni L, Berlett BS, Stadtman ER (1996) Methionine residues as endogenous antioxidants in proteins. Proc Natl Acad Sci U S A 93(26):15036–15040. https://doi.org/10.1073/pnas.93.26.15036

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  16. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using realtime quantitative PCR and the 2−ΔΔCT Method. Methods 25(4):402–408. https://doi.org/10.1006/meth.2001.1262

    CAS  Article  Google Scholar 

  17. Mencalha R, Helmbrecht A, Arruda N, Batista L, Bertechini A (2016) Comparing bioefficacy of different sources of methionine relative to DL-methionine in the grower phase (22 to 42 days) of broilers chickens. Poult Sci 95(Suppl 2):135

    Google Scholar 

  18. Moghadam MHB, Shehab A, Cherian G (2017) Methionine supplementation augments tissue n-3 fatty acid and tocopherol content in broiler birds fed flaxseed. Anim Feed Sci Technol 228(2017):149–158. https://doi.org/10.1016/j.anifeedsci.2017.04.014

    CAS  Article  Google Scholar 

  19. Nakamura M, Katoh K (1981) Influence of thawing method on several properties of rabbit meat. Bull Ishikawa Prefect Coll Agric Ishikawa 11(1):45–49

    Google Scholar 

  20. Petracci M, Cavani C (2012) Muscle growth and poultry meat quality issues. Nutrients 4(1):1–12. https://doi.org/10.3390/nu4010001

    Article  PubMed  Google Scholar 

  21. Raharjo S, Sofos JN, Schmidt GR (1992) Improved speed, specificity, and limit of determination of an aqueous acid extraction thiobarbituric acid-C18 method for measuring lipid peroxidation in beef. J Agric Food Chem 40(11):2182–2185. https://doi.org/10.1021/jf00023a027

    CAS  Article  Google Scholar 

  22. Rodrigues TP, Silva TJP (2016) Caracterização do processo de rigor mortis e qualidade da carne de animais abatidos no Brasil. Arquivos de Pesquisa Animal 1(1):1–20

    Google Scholar 

  23. Rostagno HS, Albino LFT, Donzele JL, Gomes PC, Oliveira RF, Lopes DC, Ferreira AS, Barreto SLT (2011) Brazilian tables for birds and pigs: composition of foods and nutritional requirements, 3rd edn. Universidade Federal de Viçosa, Viçosa

    Google Scholar 

  24. Souza MG, Oliveira RFM, Donzele JL, Assis Maia AP, Balbino EM, Oliveira WP (2011) Utilização das vitaminas C e E em rações para frangos de corte mantidos em ambiente de alta temperatura. R Bras Zootec 40(10):2192–2198. https://doi.org/10.1590/S1516-35982011001000019

    Article  Google Scholar 

  25. Sporer KRB, Zhou HR, Linz JE, Booren AM, Strasburg GM (2012) Differential expression of calcium-regulating genes in heat-stressed turkey breast muscle is associated with meat quality. Poult Sci 91(6):1418–1424. https://doi.org/10.3382/ps.2011-02039

    CAS  Article  PubMed  Google Scholar 

  26. Stadtman ER, Levine RL (2003) Free radical-mediated oxidation of free amino acids and amino acid residues in proteins. Amino Acids 25(3–4):207–218. https://doi.org/10.1007/s00726-003-0011-2

    CAS  Article  PubMed  Google Scholar 

  27. Goes ESR, Lara JA, Gasparino E, Del Vesco AP, Goes MD, Alexandre Filho L, Ribeiro RP (2015) Pre-slaughter stress affects ryanodine receptor protein gene expression and the water-holding capacity in fillets of the Nile tilapia. PLoS ONE 10(6):e0129145. https://doi.org/10.1371/journal.pone.0129145

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  28. Van Laack RLJM, Liu CH, Smith MO, Loveday HD (2000) Characteristics of pale, soft, exudative broiler breast meat. Poult Sci 79:1057–1061. https://doi.org/10.1093/ps/79.7.1057

    Article  PubMed  Google Scholar 

  29. Venturini KS, Sarcinelli MF, Silva LC (2007) Características da carne de frango. Espírito Santo: UFES, p. 7. (Boletim Técnico: 01307 PIE)

  30. Wang S-T, Chen H-W, Sheen L-Y, Lii C-K (1997) Methionine and cysteine affect glutathione level, glutathione-related enzyme activities and the expression of glutathione s-transferase isozymes in rat hepatocytes. J Nutr 127(11):2135–2141. https://doi.org/10.1093/jn/127.11.2135

    CAS  Article  PubMed  Google Scholar 

  31. Wang Y, Yin X, Yin D, Lei Z, Mahmood T, Yuan J (2019) Antioxidant response and bioavailability of methionine hydroxy analog relative to DL-methionine in broiler chickens. Anim Nutr 5(3):241–247. https://doi.org/10.1016/j.aninu.2019.06.007

    Article  PubMed  PubMed Central  Google Scholar 

  32. Wheeler TL, Shackelford SD, Koohmaraie M (1997) Standardizing collection and interpretation of Warner-Bratzler shear force and sensory tenderness data. In: Proceedings of the Reciprocal Meat Conference, vol 50, pp.68–77. Acess: %3chttps://www.ars.usda.gov/ARSUserFiles/30400510/1997500068.pdf%3e.

  33. Wilkinson BHP, Janz JAM, Morel PCH, Purchas RW, Hendriks WH (2006) The effect of modified atmosphere packaging with carbon monoxide on the storage quality of master-packaged fresh pork. Meat Sci 73(4):605–610. https://doi.org/10.1016/j.meatsci.2006.03.001

    CAS  Article  PubMed  Google Scholar 

  34. Zhang JF, Hu ZP, Lu CH, Yang MX, Zhang LL, Wang T (2015) Dietary curcumin supplementation protects against heat-stress-impaired growth performance of broilers possibly through a mitochondrial pathway. J Anim Sci 93(4):1656–1665. https://doi.org/10.2527/jas.2014-8244

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the support of the Araucaria Research of the State of Paraná - (Maringá, PR, Brazil) by provide funding for research publication.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Andressa de Freitas Dionizio.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

de Freitas Dionizio, A., de Souza Khatlab, A., Alcalde, C.R. et al. Supplementation with free methionine or methionine dipeptide improves meat quality in broilers exposed to heat stress. J Food Sci Technol 58, 205–215 (2021). https://doi.org/10.1007/s13197-020-04530-2

Download citation

Keywords

  • Heat stress
  • Methionine
  • Dipeptide
  • Antioxidant
  • Oxidation